

www.datamarket.at

D4.1: First Version of the DMA Federated
Cloud

Deliverable number D4.1

Dissemination level Internal

Delivery date 31.12.2017

Status Final

Author(s)
Martin Heuschober, Michael Kofler-Häusler,
Axel Quitt, Elisabeth Rössner, Michael
Schmollngruber

The Data Market Austria Project has
received funding from the programme “ICT
of the Future” of the Austrian Research
Promotion Agency (FFG) and the Austrian
Ministry for Transport, Innovation and
Technology (Project 855404)

D4.1 First Version of the Federated Cloud Final

Page 2 of 18

Executive Summary

The present document is a detailed description of the design decisions made to implement the
technical and infrastructural basis of a Data Economy Platform using a federated cloud
approach. In particular, this platform will serve as the foundation of the Data Market Austria
(DMA).
As this is a research and development project our (meaning the members of Work Package 4,
WP4) emphasis in the first month of the project was to develop a solid vision of the structure
and components which are needed to produce a functional result and fits the operational model
of the Data Market Austria.
In the beginning we started with a monolithic approach, but soon it became clear, that this
working hypothesis needed to be changed to a more flexible and decentralized approach.
Otherwise the ideas of becoming an “OPEN” platform could not have been realized.
Following the demand of FFG, that various options of computing infrastructure needed to be
technically and economically evaluated, we proposed either the use of a bare metal
infrastructure or the Open Telekom Cloud (OTC), which is quite similar to the offering of other
Public Cloud Providers (e.g. Microsoft Azure). After consulting our findings within the
consortium, we suggested to opt for an OTC-based approach for the duration of this project.
OTC comes along with a technology stack, which is quite common in the consortium, including
Docker and Kubernetes.
To enforce a certain set of best practices, which builds the basis for smooth inter service
communication some functionality needs to be run and administered centrally. We call this
entity the “Central Node”. This Central Node runs on the OTC and distributes requests to either
the same or other Clouds.
The Central Node also provides the Data Market Austria Portal, which is the landing zone for
all applicants, which are interested in consuming DMA Services or Data.
The new GDPR legislation also led to a rethinking of some prior concepts to ensure a strict
separation of processing metadata and detailed data, which might include personal
information. To be compliant with this legislation we have redesigned the Central Node in a
way, so that in fact only metadata will be processed within the infrastructure associated with
the DMA legal entity. Detailed data will be processed in separate entities which can be legally
defined by Data Processing Agreements (DPA, in Austrian legislation:
Auftragsdatenverarbeitung (ADV)).
In this document you will find the current status of the first version of the federated cloud and
examples showcasing how the Central Node, based on the OTC, interacts with services in
other cloud environments. To show the feasibility of the federated cloud we connected the
Central Node with the CAS authentication and authorization service hosted by Catalysts in a
separate cloud.
In accordance with the European legislation, who changed the environment for data
processing and data economy projects (like DMA), the integration of real world datasets was
not possible.
We, T-Systems, as leader of WP4 and our consortium members working in this package are
confident to gain speed, now that common directions and the architecture is established. And
we will present a more mature second version of the federated cloud in D4.3 and the final
version in D4.5.
Our next steps focus on integrating services like blockchain, metadata search and others into
the Central Node and presenting these services on the Portal landing page.

D4.1 First Version of the Federated Cloud Final

Page 3 of 18

Table of Contents

1 Introduction .. 5
1.1 Different Approaches to implementing a federated cloud 5

1.1.1 Benefits of Microservices .. 5
1.1.2 Downsides of Microservices .. 6
1.1.3 Reasons for choosing the microservice based approach................................... 6

2 Architecture and technology overview .. 8
2.1 Conceptual Design of the DMA federated cloud .. 8

2.1.1 Central Authentication Service (CAS).. 8
2.1.2 Central Node ... 8
2.1.3 Example Data Service ... 9

2.2 Technologies and infrastructure used in the Central Node 9
2.3 Architecture of the Central Node .. 9
2.4 Overview of the existing components in the Central Node 11

2.4.1 Screenshot: Landing Page .. 11
2.4.2 Screenshot: CAS Login ... 11
2.4.3 Screenshot: Internal Service Registry ... 12
2.4.4 Screenshot: Console/Kibana ... 12
2.4.5 Screenshot: Grafana ... 13

3 Next steps in developing the Central Node ... 13
3.1 Services for the Central Node ... 13

3.1.1 Service registry for external services ... 14
3.1.2 Billing engine... 14
3.1.3 Data and functional services ... 15
3.1.4 Preview: Developer assistance for a distributed cloud 15

3.2 Security ... 15
3.2.1 Securing external-facing services .. 15
3.2.2 Authorization with OAuth 2.0 ... 15

3.3 The orchestration layer as part of the federated cloud 16
3.3.1 Kubernetes.. 16
3.3.2 OTC Cloud Container Engine (CCE) ... 16

4 References ... 18

D4.1 First Version of the Federated Cloud Final

Page 4 of 18

List of Figures

Figure 1: Initial architecture concept for DMA ... 7
Figure 2: Conceptual Design of the DMA federated cloud .. 8
Figure 3: Architecture of the Central Node ... 10
Figure 4: Screenshot of the Portal Landing Page ... 11
Figure 5: Screenshot of the CAS Login .. 11
Figure 6: Screenshot of the internal registry for services inside the Central Node 12
Figure 7: Screenshot of the Console/Kibana ... 12
Figure 8: Screenshot of Grafana (no data in the system available yet) ... 13
Figure 9: Components of a Multilevel Billing Engine ... 15
Figure 10: Basic architecture of a minimal Kubernetes cluster .. 16

List of Abbreviations

CAS Central Authentication and Authorization Service

CCE Cloud Container Engine

DMA Data Market Austria

DPA Data Processing Agreement

GDPR General Data Protection Regulation

HA High Availability

OTC Open Telekom Cloud

PaaS Platform as a Service

PoC Proof of Concept

TLS Transport Layer Security

WP Work Package

D4.1 First Version of the Federated Cloud Final

Page 5 of 18

1 Introduction

1.1 Different Approaches to implementing a federated cloud
Building an orchestration layer for any software project using multiple components and external
services is a complex endeavour and has been subject to constant re-design in the last few
years.
The classical approach is to create a single monolithic application that performs tasks like:

• monitoring
• logging
• alerting
• configuration
• registration and coordination of services
• scheduling
• (re)starting services on demand

Typically an application like this would run on a dedicated custom hardware to provide fault
tolerance and stability, and external components would communicate via SOAP or other
(proprietary) protocols.
The modern approach is to organize it with microservices, i.e. each application is minimal in
the sense that it only performs one of the above tasks, and all of those microservices
communicate over REST-interfaces or over a message broker. Each microservice would run
on a virtual machine or commodity hardware. Fault tolerance in a microservice architecture is
usually obtained by running multiple versions of each service at the same time or – assuming
the start-up time is short enough - starting services on demand. Packaging and bundling each
microservice is usually done via a container technology like docker, which provides a running
environment (i.e. all necessary libraries) and the (microservice) application.
Another microservice technology worth mentioning is the use of unikernels, which are a
bundled operating system/application and run virtualized directly on top of hypervisors like
XEN or kvm. Without the need of a container, the use of unikernels is usually resulting in a
faster start-up (milliseconds vs. minutes), and a smaller attack surface, since it only contains
a minimal set of libraries.

1.1.1 Benefits of Microservices

• Real fault tolerance
Docker and Kubernetes (Orchestration and Cluster Management) or OpenShift (PaaS)
provide enough abstractions for realizing failover to other services and restarting
services/service groups which have died or become unavailable, tasks that are well
understood and though complex by nature, very much manageable. Compared to a
monolithic application, a microservice architecture should never have a single point of
failure.

• Upgrading and replacing services
Having multiple versions of a service, protocol or interface allow to easily upgrade a
service and dependent components, while other services can still use the parallel
running old versions. Upgrading one library within one microservice is not affecting any
other microservice, whereas in a monolithic approach one task might force you to use
an older library in the whole application where every other “component” would be fine
with upgrading that library. Especially for components that are accessible from the
internet not being able to upgrade or patching a component is a critical security issue.

D4.1 First Version of the Federated Cloud Final

Page 6 of 18

• Scalability

Starting 5 or 500 microservices is just a matter of configuration, and adjusting to service
usage is a fully automatized process, and easily done with multiple providers like Open
Telekom Cloud (OTC), AWS, Azure and the like. In comparison, the classical monolithic
approach would need better hardware, which might result in significantly higher
expenses, whereas the higher performance is only needed at utilization peaks.
Microservices, on the other hand, are scaled up or driven down by the demand.

1.1.2 Downsides of Microservices

• Complexity
Usually a setup of microservices involves multiple instances of one service, which
possibly need to work (over a network) to achieve a consensus, to allow data integrity.
Moreover, microservices are not constrained to one (virtual) network, but can exist on
different (virtual) machines in different computing centres in different time
zones/continents, which lead to another class of possible errors.

• Resource usage

Although the term microservice suggests a small impact on resources, the average
need of a Spring Boot microservice is about 1 GB RAM. Here a monolithic application
profits a lot from sharing resources and libraries.

• Bug tracking across the system
Debugging or finding bugs/root causes is inherently difficult in a distributed system.

A more in depth analysis of the pros and cons of microservices can be found in (Newman,
2015).

1.1.3 Reasons for choosing the microservice based approach

One of the most fundamental results of Work Package 4 is the evaluation of the economic and
technical aspects of a monolithic approach versus a microservice based.
The classical approach is reflected in the early infrastructure architecture draft shown in Figure
1.

D4.1 First Version of the Federated Cloud Final

Page 7 of 18

Figure 1: Initial architecture concept for DMA
Historically the computing power has been the expensive part of development, whereas
nowadays the time of developers, analysts and designers is becoming the bottleneck, when at
the same time hardware is getting cheaper. Thus the downside of resource usage is negligible.
But maintainability and short development cycles are more important reasons to consider when
deciding an architecture.
The above requirements of fast and reliable development combined with high availability and
fault tolerance are met in a cloud based infrastructure. It was the consensual decision of FFG
and the consortium to leverage OTC as infrastructure, as the OTC already provides
Kubernetes and other software to manage dockerized services. As the OTC is the predestined
environment for using a microservice architecture, the next logical step was the choice of using
microservices and therefore gaining the benefits of distributed computing.

D4.1 First Version of the Federated Cloud Final

Page 8 of 18

2 Architecture and technology overview

2.1 Conceptual Design of the DMA federated cloud
DMA Cloud Federation refers to the unionization of software, infrastructure and platform
services from disparate networks that can be accessed by a client via the internet. The
schematic is shown in Figure 2.

Figure 2: Conceptual Design of the DMA federated cloud
The federation of cloud resources in DMA is facilitated through the Central Node's gateway
that connects public or external clouds, private or internal clouds (owned by a DMA
infrastructure provider) and community clouds (owned by several cooperating DMA
infrastructure providers); creating a hybrid cloud computing environment.
It is important to note that federated cloud computing services still rely on the existence of
physical data centres.

2.1.1 Central Authentication Service (CAS)

The Central Authentication Service (CAS) is a software package providing single sign-on. Its
purpose is to permit a user to access multiple applications, while providing their credentials
(such as user ID and password) only once. It also allows web applications to authenticate
users without gaining access to a user's security credentials, such as a password, by using an
OAuth2 token in our case.

2.1.2 Central Node

The Central Node consists of two main system parts:

• Gateway: The entry point into the Central Node and dispatcher of synchronous and
asynchronous requests from the internet to all services registered at the registry for
external services.

D4.1 First Version of the Federated Cloud Final

Page 9 of 18

• Registry for external services: Overview of existing services with name, description
and assigned tenant.

2.1.3 Example Data Service

Example REST service including a GUI component, which provides anonymized location data
for requests that have a valid OAuth2 token and belong to an authorized tenant.

2.2 Technologies and infrastructure used in the Central
Node

Designing such an infrastructure from scratch is a complex endeavour and quite error prone
with a steep learning curve. Therefore we are leveraging existing, open-source technologies
that have stood the test of time and are used by many companies, which report errors and
contribute to make the existing libraries/components better.
The Central Node facilitates the following technologies:

• Open Telekom Cloud: Infrastructure provider based on OpenStack
• Docker: container for each microservice
• Kubernetes: Production-Grade Container Orchestration
• JHipster: generator for Spring Boot based microservices + best

practices/configurations
o Netflix-Open-Source Stack: providing gateway, registry and configuration

service
o Kafka: Message broker for asynchronous communication between services

(alternative to HTTP-REST calls)
o ELK-Stack (Elasticsearch/Logstash/Kibana): provides logging for distributed

systems including a powerful dashboard/search
o Prometheus: metrics aggregator for distributed systems
o Grafana: visualization of metrics
o Swagger: API documentation/unified interface description
o Angular + Bootstrap: front end and CSS framework/technology

• CAS: Central Authentication and Authorization Service (CAS) provided by Catalysts
• Nginx: acting as a reverse proxy and handles TLS termination

2.3 Architecture of the Central Node
The current development version of the Central Node consists of the components shown in
Figure 3.

D4.1 First Version of the Federated Cloud Final

Page 10 of 18

Figure 3: Architecture of the Central Node

The universal entry point for microservices is the gateway, a docker container, which provides
a website to login, navigate, and access the metadata registry service.
The tasks of user authentication and authorization via OAuth2 are delegated to the external
service CAS (provided by Catalysts).
Every microservice within the Central Node will consume its configuration on start-up from an
eureka registry based on a folder structure or git repository. Furthermore, every service will
register basic data on start-up and de-register on shut-down.
Part of the configuration is the location of the console, i.e. the three docker containers for
elasticsearch, logstash, and kibana, so every microservice can send its logging data to a
centralized location, where they are indexed for full-text search and stored.
Another part of the configuration is the location of the monitoring component - two dockerized
services, prometheus and grafana, used for data aggregation and visualization, respectively.
The registry for external services is a prototype microservice, which stores meta-information
like name, and description of each external data- and service provider. All of this information
is secured by OAuth2 such that no information can be accessed without registration at the
CAS server.
All of the infrastructure in the Central Node (except for the external component CAS) is
protected and secured by a reverse proxy – nginx, such that ports and services are not
exposed directly to the internet.

D4.1 First Version of the Federated Cloud Final

Page 11 of 18

2.4 Overview of the existing components in the Central
Node

2.4.1 Screenshot: Landing Page

Figure 4: Screenshot of the Portal Landing Page

2.4.2 Screenshot: CAS Login

Figure 5: Screenshot of the CAS Login

D4.1 First Version of the Federated Cloud Final

Page 12 of 18

2.4.3 Screenshot: Internal Service Registry

Figure 6: Screenshot of the internal registry for services inside the Central Node

2.4.4 Screenshot: Console/Kibana

Figure 7: Screenshot of the Console/Kibana

D4.1 First Version of the Federated Cloud Final

Page 13 of 18

2.4.5 Screenshot: Grafana

Figure 8: Screenshot of Grafana (no data in the system available yet)

3 Next steps in developing the Central Node
The first Proof of Concept (PoC) version of a microservice based Central Node is running in
OTC and it is subject to ongoing further development. The following list highlights some of the
improvements that are currently being implemented:

• Securing the communication from the client to nginx with HTTPS
• Providing a more fine grained security concept for authentication of services within the

Central Node (modularization, centralization)
• Setting up fault tolerance and high availability (HA), by making components like the

service registry redundant
• Integrating full traceability with audit logs and augmenting the security with tenants
• Improving the compatibility between CAS and Spring security
• Setting up advanced metrics and visualization with prometheus and grafana
• Deploying to Cloud Container Engine (CCE) and setting up a modern staging

environment with a redundant reverse proxy/load balancer for production.
• Securing the internal service communication by means of Transport Layer Security

(TLS)

3.1 Services for the Central Node
Goal of this project is to provide an infrastructure to access data-services as well as services
providing business logic. Here we want to list a few and explain how they will integrate with the
Central Node.

D4.1 First Version of the Federated Cloud Final

Page 14 of 18

3.1.1 Service registry for external services

This registry will serve the purpose of giving an overview of existing services as well as
providing a platform for administration purposes. It also serves as a monitoring tool for currently
deployed services.
● Overview

o name and description of each external service and its provider
● Administration of containerized infrastructure

o registration and deregistration of services
o configuration information for services (e.g. endpoints of CAS, gateway, etc.)
o managing dependencies between external services

● Monitoring
o health check
o number of instances of each external service
o location of each external service instance

One thing to note is that the registry for external services is just a technical registry. Where the
metadata registry manages business information about datasets and services as well as
descriptions value to the end user, this registry collects only information about location of
services to be able link to, name, a minimal health status, as other technical information, which
are to be defined within WP4.

3.1.2 Billing engine

Another central part is the billing engine, where invoices to DMA Customers will be generated
based upon the individual consumption of data, infrastructure, or services.
In the beginning, our idea was that billing or at least the measurements of consumptions shall
be a central service. Due to the fact that European GDPR legislation sets special requirements
to process personal data, our point of view is that billing itself shall be a service outside the
Central Node. In our discussions we often came around the topic that in an “OPEN” Data
Economy you cannot prevent a Billing Service Provider to provide his services also on the
Data Market.
The Billing of Data Market Services need to follow a “Multilevel”-Billing approach. This means
that various tariff and business models have to be defined. Furthermore consumption of
infrastructure, services, and data usage need to be bundled, priced, redirected to “Service
Consumer” data, and presented to the DMA participant.
T-Systems can provide such a billing system, originally designed for Multilevel-Utility
Providers. This system is also built in its major parts on open source Software and might not
increase licence fee obligations for the DMA, requiring further evaluation.
The architectural sketch shown in Figure 9 provides an overview on the components which are
necessary for a Multilevel Billing approach:

D4.1 First Version of the Federated Cloud Final

Page 15 of 18

Figure 9: Components of a Multilevel Billing Engine

3.1.3 Data and functional services

External services which provide either data or functionality can be developed in any fashion or
language as long as they provide a minimal core to interface with the Central Node, i.e. comply
with registration at the service registry for external services, use OAuth2 as
authentication/authorization protocol, and communicate via HTTPS.

3.1.4 Preview: Developer assistance for a distributed cloud

The main customers of DMA are software developers, data scientists, and researchers. To
minimize the entry barrier, we provide tooling for those target groups. In a typical use case, a
customer needs to have a first look into a (demo-)dataset before purchasing it. The same is
the case for data-centered services.
To allow for such an evaluation with minimal effort, we have created a sandbox environment
within the OpenShift platform. In this environment, customers can start a data-science
workbench. We have developed respective project templates that set up a self-contained
working environment including code editors, interpreter, execution kernel, a best-practice set
of relevant libraries, etc. with minimal effort.
As a next step, we will connect these workbenches to the DMA authentication service as well
as the data and service catalogue. This will allow us to give customers access to resources
they are entitled to in an even more effortless way.

3.2 Security
3.2.1 Securing external-facing services

Both users and services will only use HTTPS (HTTP over TLS1.2) to communicate with the
Central Node and external services, if used, to provide a secure privacy and data integrity.

3.2.2 Authorization with OAuth 2.0

OAuth2 is an authorization framework, which enables applications to obtain limited access to
user accounts of DMA services. It works by delegating the user authentication to the CAS

D4.1 First Version of the Federated Cloud Final

Page 16 of 18

service and allows third-party services to authorize the user via a token, which then can be
verified with the CAS server at any time. Moreover the CAS server also provides
authorization with roles, which can be requested for each user with the same token.

3.3 The orchestration layer as part of the federated cloud
3.3.1 Kubernetes

Kubernetes is an orchestration platform for applications, which run as containers. It handles
issues like configuration, replication, load balancing, scheduling of all the nodes or logical
groups in the cluster. The basic architecture of a setup containing 3 nodes (1 master node, 2
worker nodes), is shown in Figure 10.

Figure 10: Basic architecture of a minimal Kubernetes cluster

3.3.2 OTC Cloud Container Engine (CCE)

The Cloud Container Engine (CCE) is the management interface for orchestrating services in
the OTC based on Kubernetes and provides users with maximum platform independence. As
it is based on standard container technology the CCE also offers to access resources from the
Docker hub.
The CCE manages clusters, images, templates and container-capable applications as well as
operation of the applications. When working with Kubernetes it helps to set up and manage
containerized apps.
In the current status of work, the focus was to build a prototype of the infrastructure architecture
used for the central node in the OTC. The next step is to design an environment according to
the technical requirements to meet the specification of a federated cloud. To integrate the

D4.1 First Version of the Federated Cloud Final

Page 17 of 18

external services and other cloud infrastructures, it is necessary to evaluate the impact and
the consequences of the application of OpenShift versus the application of CCE.

D4.1 First Version of the Federated Cloud Final

Page 18 of 18

4 References
Newman, S. (2015). Building Microservices. O'Reilly Media.
URL: https://kubernetes.io

