

www.datamarket.at

Data Technology Specification and
Development Roadmap

Deliverable number D5.1

Dissemination level Public

Delivery date 19 June 2017

Status Final (Version 1.2)

Author(s)
Bernd Ivanschitz, Ross King,

Thomas Lampoltshammer, Sven Schlarb

The Data Market Austria Project has received
funding from the programme “ICT of the
Future” of the Austrian Research Promotion
Agency (FFG) and the Austrian Ministry for
Transport, Innovation and Technology
(Project 855404)

D5.1 Data Technology Specification and Development Roadmap

Page 2 of 62

Executive Summary

This document presents the DMA Data Technology Specification and Development Roadmap
regarding the ongoing work in WP5 of the DMA project. The document relates to deliverable D2.2
“D2.2 Community-driven Data-Services Ecosystem Requirements (1st version)” which formulates
the requirements of the DMA community. It will be explained in what way the requirements
formulated in D2.2 are going to be addressed. The document gives an overview of the components
that are going to be developed in WP5 and how these components are planned to be employed to
provide a dataset ingest solution as part of the DMA federated cloud environment. Furthermore, it
is explained how the components are exposed as REST services and how these services are going
to be combined to provide an integrated solution for dataset ingest and management,
preservation, provenance capturing, quality enhancement, semantic enrichment.

D5.1 Data Technology Specification and Development Roadmap

Page 3 of 62

Table of Contents

1 Introduction ... 5

2 Required Capabilities .. 5
2.1 Storing and processing within the cloud .. 5
2.2 Blockchain Technology .. 6
2.3 Data set ingest .. 7
2.4 Standards for long-term-preservation ... 8
2.5 Security ... 8

3 Framework Technologies Overview .. 9
3.1 Persistence/Storage .. 9
3.2 Cloud Technology ... 10
3.3 Cluster/Parallelization ... 11
3.4 Streaming Data ... 12
3.5 Blockchain ... 13

4 Components ... 15
4.1 Conduit Dataset Ingest & Preservation .. 16

4.1.1 Web user interface .. 18
4.1.2 Validation .. 18
4.1.3 Semi-automatic metadata extraction and generation ... 19
4.1.4 Persistent storage ... 19

4.2 Long-term preservation and data citation components 22
4.2.1 Long-term preservation ... 22
4.2.2 Persistent unique identifier (PID) ... 23

4.3 Data Management GUI ... 24
4.4 Blockchain components for security and provenance .. 25

4.4.1 Deployment .. 26
4.4.2 Decentralized registry .. 26
4.4.3 Provenance storage .. 27
4.4.4 Data set authenticity .. 27

4.5 Data quality enhancement ... 28
4.5.1 Data quality assessment .. 28
4.5.2 Data quality improvement ... 31

5 Services ... 32
5.1 Context .. 32
5.2 Data Set Ingest Pipeline ... 33
5.3 Service Interface Specifications (REST) ... 35

5.3.1 Data set ingest services .. 35
5.3.2 Persistent Identification and Long-term preservation services 37
5.3.3 Blockchain services for security and provenance ... 44
5.3.4 Data quality enhancement services ... 47

D5.1 Data Technology Specification and Development Roadmap

Page 4 of 62

5.3.5 Generic services .. 53

6 Development and Deployment Roadmap .. 59
6.1 Phase 1: Prototype Release .. 59
6.2 Phase 2: Final Release .. 60

7 Conclusion .. 61

8 Appendices ... 61
8.1 Appendix A: HTTP Status Codes .. 61

List of Abbreviations

AAL Active Assisted Living (domain)

BC Blockchain

DMA Data Market Austria

DM Data Management

DQ Data Quality

ENGY Energy (domain)

EOS Earth Observation/Space (domain)

HDFS Hadoop Distributed File System (Apache Hadoop)

PID Persistent Identifier

I4.0 Industry 4.0 (domain)

MOB Mobility (domain)

SC Service Component

https://docs.google.com/document/d/1CBvXlVadpLTqYkdIMRd1h7AMg9JV5ANY9-gRMaG73Hc/edit#heading=h.xpzkg6rzpzi7
https://docs.google.com/document/d/1CBvXlVadpLTqYkdIMRd1h7AMg9JV5ANY9-gRMaG73Hc/edit#heading=h.pdb43m9kxzk8

D5.1 Data Technology Specification and Development Roadmap

Page 5 of 62

1 Introduction

An essential part of the Data Market Austria platform is the data provisioning, management, and
storage environment. It consists of a set of data ingest services which allow publishers to
incorporate a great variety of data types available in form of data files of varying size, data streams,
or as data consumption endpoints. The ingest services must uniquely identify datasets and their
parts, extracting existing and generating additional metadata, providing indicators for the quality
of the datasets, storing and preserving the datasets for the long term, and finally providing a
trustworthy provenance record of data access or manipulation operations.

This document relates to deliverable D2.2 “D2.2 Community-driven Data-Services Ecosystem
Requirements (1st version),” which formulates the requirements of the DMA community. A relation
to WP3 exists in relation to the data provenance tracking which is a basic requirement for the
business model development. Furthermore, WP5 depends on WP4 which provides the basic
infrastructure services. WP5 lays the foundation for WP6 by providing data access services. Cross-
work package services for security (authentication/authorization), user management, monitoring,
storage as well as central/federated storage services need to be coordinated with WP4. In what
concerns the specification and implementation of services, WP5 relates to WP6 and WP7. For this
reason, this deliverable will also address architectural aspects which go beyond the scope of WP5’s
main objective to deliver dataset ingest services for the DMA platform.

The document is structured as follows: In the following section “Required Capabilities”, WP5 will
express its view on several topics which have been covered across different domains in D2.2 “D2.2
Community-driven Data-Services Ecosystem Requirements (1st version)”. The purpose is to
highlight the technical topics which have been identified as being relevant from WP5’s perspective
and to explain to what extent the requirements are going to be addressed. Section two gives an
overview about basic technical frameworks and technologies which will be used to address the
requirements discussed before and explains how they the presented technologies are going to
contribute to an integrated dataset ingest solution. Section three outlines the basic components
which are going to be developed, integrated and deployed by WP5. Section four defines the various
services by providing service interface specifications. The section starts with an overview about
WP5 services in the context of the DMA federated cloud environment, followed by explaining the
principle of how services are going to be combined into composite data processing workflows. The
following service specifications will provide concrete insights about what can be expected from the
various services developed or integrated by WP5. The last section presents the development,
integration and deployment roadmap broken down into individual components and services. The
document concludes with a summary and a discussion of open questions and their possible
implications.

2 Required Capabilities

2.1 Storing and processing within the cloud

According to the requirements from the DMA user community, as documented in Deliverable D2.2,
all domains stated interest in the capability to store and process data in the cloud.

However, the term “cloud” can denote a broad range of remote storage and computing services. In
a general sense, a cloud computing environment allows users to make use of applications and
storage services on demand in an external network. The cloud environment can be public or
private and there is a great variety of business models how these services are being paid by users.

D5.1 Data Technology Specification and Development Roadmap

Page 6 of 62

In the context of the DMA project, two aspects of cloud computing are most relevant:

• The ability to “run” a DMA node (cloud compliant software/application stack) in a remote
environment of an infrastructure provider.

• The ability to perform massive computations with very large datasets using a computer
cluster.

The DMA community (as defined in D2.2) representing the AAL domain stated interest in the ability
to run data analytics directly in the cloud. Other domains did not explicitly mention it, but the high
interest in the second aspect related to “big data” allows the assumption that it implies interest in
the first aspect as well. The DMA community raised general concerns regarding security and
privacy of data. This is of high relevance when the intention is to host data and services in a remote
environment.

WP5 will address both aspects, i.e. it will make sure to use cloud compliant technologies (software
modules deployed as containers) which allow use of the DMA software stack in environments of a
variety of infrastructure providers to choose from. The second aspect is to consider the ability to
carry out large scale data processing. The core technology to fulfil this requirement in the DMA
environment is to foresee an additional hadoop cluster (MapReduce + HDFS) as part of the DMA
architecture. Even though it is not part of the main architecture, the possible need to include a
Hadoop Cluster with additional Big Data processing frameworks is taken into consideration.

2.2 Blockchain Technology

Blockchains are a specific type of Distributed Ledgers, which are systems by which a network of
actors that do not necessarily trust each other can nevertheless share an agreed-upon history of
events or transactions. Blockchains make use of hash functions and asymmetric encryption to
build an immutable shared transaction history. In the purest form, a full copy of the blockchain
and hence the transaction history is shared among all participants in a decentral peer-to-peer
network.

The requirements on Blockchains coming from the DMA user community, as documented in
Deliverable D2.2, are present but vague. We learn that Blockchains are discussed intensively in the
ENGY Domain, and that there is a high degree of interest in Blockchain technologies coming from
the I4.0 and EOS domains, in particular with regard to possibilities for smart billing and smart
contracts. Other than concluding the interest (if not the necessity) in integrating Blockchain
technologies within the Data Market technology foundation, and the requirement that smart
contracts should be possible in this context, we cannot derive further specific requirements from
the user community.

However, the project internal requirements, as documented by our project proposal, are
considerably more specific. An analysis of the proposal yields the following concrete desired
applications of Blockchain technologies expected by the project partners, the work packages, and
our funding agency:

• Security
o Authentication and authorization through blockchain actors
o Ownership, privacy, and Data Protection
o Encryption and verification of transactions

• Provenance capturing
o Providing persistent identifiers and linking them to a blockchain entity
o Providing a history of data ownership and data transformations through for

example quality and enrichment services
o Monitoring data and service use

D5.1 Data Technology Specification and Development Roadmap

Page 7 of 62

• Smart billing and contracting possibilities
o Controlling data and service access
o Enforcement of Service Level Agreements

• Resilience through decentralized architecture
o Applying in turn to provenance, preservation, and security

Some non-functional requirements can be derived indirectly. D2.2 calls for “a mechanism that
ensures that only serious vendors trade on the DMA.” Although the meaning of “serious vendor”
can be debated, this in any case calls for some form of controlled or mediated access for new
organizations wishing to join and use the DMA foundation. From this we infer that a private (also
known as “permissioned”) Blockchain will be required in order to enforce access restrictions
(public Blockchains like Bitcoin are characterized by being open to anybody in the world who
wishes to join the network).

We further infer that Blockchain implementations based on an open source license model will be
preferable to closed, proprietary, and or commercial solutions, as the latter would have profound
limiting effects on the business and deployment model for the platform.

2.3 Data set ingest

Regarding the data set ingest, deliverable D2.2 refers to the several functional aspects, such as the
guided input process, data set profiling, metadata validation, metadata mapping, semi-automatic
metadata extraction and generation (also called semantic enrichment), and validation of
ownership. High importance was assigned by the MOB and ENGY domains to all of these aspects
whereas I4.0, AAL and EOS have generally attributed medium importance.

Starting with the “guided input process” function, WP5 will provide alternative ways to start the
ingest process. For file based datasets, there will be the following options to make datasets
available in the DMA marketplace:

• Guided, form-based data upload.
• Machine readable instructions to initiate data crawling.
• Create data and metadata according to the data/metadata specification defined by DMA

(which might require mapping external metadata schema to DMA metadata schema).

Regarding data consumption services provided in form of an API, there will be the option of a
guided, form-based registration.

The “profiling” function will be mainly covered by WP7 (tasks 7.1 and 7.2). However, WP5 can
support in integrating the information extraction services into the data set ingest pipeline in order
to make the necessary metadata available to the matchmaking framework (WP7, task 7.1).

The “metadata validation” function will be provided as part of the data set ingest pipeline. The
minimum functionality is a format completeness validation which can be extended to consider
interoperability aspects, i.e. verifying the availability of information entities required by other DMA
services. DMA will also support “metadata mapping” (WP6, T6.3) to map external metadata
schemas to DMA metadata schema (before ingesting such metadata together with the data set).

Similar to the “profiling” function, there will be “semi-automatic metadata extraction and
generation”, also called “semantic enrichment”, function developed by WP6 (task 6.3), WP5 can
support this function by integrating the service into the data ingest pipeline.

The “validation of ownership” function is planned to be provided by integrating the DMA identity
services with blockchain services.

D5.1 Data Technology Specification and Development Roadmap

Page 8 of 62

2.4 Standards for long-term-preservation

In a general sense, long-term preservation capability was agreed as an important aspect by the
DMA user community, as documented in Deliverable D2.2. This allows inferring the general
requirement that there must be means to ensure long-term preservation of data assets by making
sure that datasets and related metadata which are being stored in the DMA federated platform
must be accessible and interpretable by the designated community on the long-term.

One of the core aspects that will be addressed by WP5 related to the area of long-term preservation
is that a basic structure and storage format for a DMA data asset will be designed. Particular
attention will be paid to making sure that the format is adequate for storing it in the DMA cloud
environment and for transferring between DMA nodes. This allows replicating data in the DMA
federated cloud environment, efficiently providing it to a consumer service, or supporting backup
procedures.

Furthermore, the fact that long-term preservation is considered as being of general importance
permits deriving the need for additional services to take adequate digital preservation measures.
This means that it must be possible for collection curators and administrators to take appropriate
actions and to address specific risks which are being identified.

Specifically this means that data characterization services must be employed as part of the data
ingest pipeline. It must be possible to extract technical metadata (e.g. file formats and additional
technical properties) which allow analyzing to what extent certain risks are applicable and if
measures need to be taken. Identification of file formats is the most fundamental requirement to
enable informed decisions about adequate preservation actions and it is the basis for being able to
decide if data files which are part of a data set submission are accepted “as is” or if a
transformation is required to make sure the data set can be used by the target community in a
sensible way. A central requirement regarding this functionality is therefore to be able to define a
machine-actionable policy for data migration. It closely relates to the quality enhancement
services developed as part of WP5 because the purpose of these services is also to improve
usability and interpretability of the datasets.

2.5 Security

In the broad sense, basic security functionality is a general requirement across all the different
domains which have been asked to provide input for deliverable D.2.2. Medium to high relevance
was attributed to the security aspect and there is general agreement, that there must be
mechanisms to ensure secure data transfer and e.g. versioning, i.e. data provenance. Tracking the
usage of data and services including basic security and access control can be seen as a specific
function of the provenance capturing functionality and is rated as being of medium importance by
the different domains.

Additionally, specific security aspects were highlighted by some domains, such as the following:

• In the AAL domain there is a focus on concerns related to privacy loss and data leaks. The
reason for this is that there is personal information involved which are subject to national
and international data privacy policies and data protection directives. As a consequence,
the implementation of a high level of confidentiality and privacy measures is demanded by
this domain.

• In the EOS domain it is stated that there is a need for security in trading and using the data,
e.g. mechanisms that must to be put in place to ensure that data is not exploited by non-
authorised parties.

D5.1 Data Technology Specification and Development Roadmap

Page 9 of 62

• Related to the MOB domain it is stated that provenance and “security of data” plays an
important role.

As a cross-work package requirement, the security aspect is relevant for all technical work
packages and central security and access control services are being developed by WP4 as part of
the basic infrastructure services (task 4.1). However, a significant contribution to the security
concept is also to be expected by WP5, especially regarding task 5.2: “Blockchains for Security and
Provenance”. A close coordination between task 5.2 and 4.1 is therefore required to enable the
integration of the basic services for user management and authentication, service use
authorization, and provenance capturing with the blockchain technology. To give a concrete
example, this means that the user management service provided in the context of WP4 must
trigger an event for the blockchain service to register the user as an entity in the blockchain.
Subsequent events, such as a data set transformation operations, can then reference this user
entity.

A security concept underlying the DMA basic platform services is still being developed. For the time
being it is assumed that the DMA services landscape is constituted by loosely coupled services
using the REST architectural approach. In the prototype development phase1, users will have to
authenticate using a central user authentication service (for example, based on OAuth 2.0 with SSL
encrypted connections). In the final release phase it is planned to extend this service. First, an
identity service allows protecting against unauthorized use of data access or manipulation
operations. The the blockchain service is used to verify if a user is correctly registered in the
blockchain.

WP5 will put the focus on provenance capturing using blockchain technology. The data set ingest
will be conceived as data set transformation and manipulation pipelines where each individual
modification step can be recorded in a tamper-proof way.

3 Framework Technologies Overview

3.1 Persistence/Storage

As the focus of this document lies on data ingest services, it will not do a comparison or evaluation
of persistence/storage technologies to be used in DMA as this falls primarily into the scope of WP4.
The purpose of this section is to explain which storage backend technology WP5 is planning to use
in for implementing data ingest services (even if the technological choices made so far are
preliminary).

For the purpose of implementing data ingest services, the persistence/storage technology is of
crucial importance because the essential outcome of the process is that datasets as well as existing
or generated metadata are persistently stored in appropriate formats and that metadata can be
made available to search, retrieval, data analysis, and other data consumption services.

Based on the expertise and evaluations carried out by partners of the DMA project (mainly
Catalysts) – at the time of the creation of this document – the decision was to use the Red Hat Ceph
Storage solution2 as the main storage backend which is particularly suitable for use in cloud
infrastructures.

1 See section “Development and Deployment roadmap”.
2 https://www.redhat.com/en/technologies/storage/ceph

D5.1 Data Technology Specification and Development Roadmap

Page 10 of 62

As a secondary storage option, HDFS (the distributed file system of Apache Hadoop) is taken into
consideration in order to support applying scalable Map/Reduce processing of very large datasets.
However, the primary outcome of the data ingest process is to store the outcome of data set
submission processes in the Ceph Storage backend. Complete data asset bundles or parts of them
would be copied into HDFS if needed.

The storage backend will be used to execute the ingest of a data set submission and to store data
objects and metadata files as a data asset bundle.

3.2 Cloud Technology

At its heart, cloud computing involves using the power of the internet to outsource tasks which
would traditionally be executed on a personal computer – anything from handling simple storage
to complex development and processing – to a vast and powerful remote network of
interconnected machines. Based on the expertise of the DMA partners Catalysts and TMA , the DMA
is able to provide the services and technologies to create federation of clouds (community, private
or public clouds) that operate according to the preferences, choices and constraints set by its
owners. The necessary resources to operate a federated cloud system will be primarily defined by
WP4. At the time of the creation of this document, the DMA consortium member Catalysts is
preparing a cloud-based test environment for the deployment of basic services such as data
ingestion and metadata enrichment.

The DMA Platform will provide a Cloud storage solution to stash data on hardware in a remote
physical location, which can be accessed from any device via the internet. Clients must be able to
send files to a data server maintained by a cloud provider instead of (or as well as) storing it on
their own hard drives. Cloud storage systems generally encompass hundreds of data servers linked
together by a master control server, but the simplest system might involve just one.

Furthermore, possibilities for processing must be provided for the customers. Cloud computing
involves clients connecting to remote computing infrastructure via a network to use shared
processing power, software and other resources. This frees the DMA users from having to
constantly update and maintain their software and systems, while at the same time allowing them
to harness the processing power of a vast network. In recent years, cloud computing is emerging as
the latest distributed computing paradigm which provides redundant, inexpensive and scalable
resources on demand to system requirements. Meanwhile, cloud computing for the DMA could
adopt a pay-as-you-go model where users are charged according to the usage of cloud services
such as computation, storage and network services in the same manner as for conventional
utilities in everyday life (e.g., water, electricity, gas and telephone). Cloud computing systems offer
a new way to deploy computation and data-intensive applications. As Infrastructure as a Service
(IaaS) is a very popular way to deliver computing resources in the cloud, the heterogeneity of the
computing systems of one service provider can be well shielded by virtualisation technology. For
the DMA it is very important that users can deploy their applications in unified resources without
any infrastructure investment in the cloud, where excessive processing power and storage can be
obtained from cloud service providers.

Furthermore, cloud computing systems offer a new way in which data providers and customers
from all over the world can collaborate. For the DMA, all the metadata are managed in the cloud,
which makes it easy to provide all users with the necessary information everywhere. Furthermore,
there is also a possibility to store the whole data in the cloud, to share and sell the data among
consumers.

These requirements on the cloud infrastructure for the DMA can be described with the 5 V’s:

Volume, Velocity, Variety, Veracity and Value.

D5.1 Data Technology Specification and Development Roadmap

Page 11 of 62

• Volume
o The DMA must be able to handle enormous volume of data if needed. The cloud

resources must be scalable and offer some possibility to store or temporarily store
big amounts of data.

• Variety
o Many sources and types of data both structured and unstructured will be offered

on the DMA Platform. We must ensure that the storing and processing modules are
able to handle the varying data.

• Velocity
o The flow of data is nowadays massive and continuous. This real-time data can help

customers and businesses to make valuable decisions that provide strategic
competitive advantages. The DMA cloud resources must be able to process
streaming data.

• Veracity
o The DMA must ensure a certain standard for the metadata and data uploaded

• Value
o A key property of the DMA is the possibility to combine data from different data

providers to enrich the value of the datasets. The modified data can then be
offered in a further step via the DMA to other companies and users.

3.3 Cluster/Parallelization

The Apache Hadoop framework1, as already mentioned in the previous section, is a technology
which is used for processing very large datasets in an infrastructure which can scale-out
horizontally, i.e. the available system resources (i.e. for storage and processing) can be increased
by adding new computer nodes. Using Hadoop, the number of nodes in a cluster is virtually
unlimited and clusters may range from single node installations to clusters comprising thousands
of computers. The general approach to parallelization of Apache Hadoop is the Map/Reduce
processing paradigm which is divided into two main functions: The Map function, which splits
input data into parts which are going to be processed in parallel by the processing cores being
assigned in a computer cluster (fine-grained parallelization), and the Reduce function, which
aggregates the outcome of the parallel processing of data parts a set of outputs generated by
(possibly) multiple reducers. If the processing of very large datasets is required, e.g. to support the
pre-processing of raw data, or if filtering/aggregating large data volume datasets to create data set
derivatives, it is planned to use the Apache Hadoop framework. However, it is required in this case
that data is transferred from the main Ceph Storage backend into the Hadoop distributed file
system (HDFS) first. The time and resources needed for transferring a large data set (possibly of
Petabyte size or bigger) into HDFS must be weighed against the advantage of gaining data locality,
i.e. the benefit of having computation near the data.

For grid-based parallel processing, Celery2 is used to spread work across multiple cores of a
computer cluster (worker nodes). Celery uses execution units, called tasks, which are executed
concurrently on worker servers. This kind of parallelization directly operates on data available in
the Ceph storage backend or uses a copy of the data which was made available on the worker
machine.

1 http://hadoop.apache.org
2 http://www.celeryproject.org

D5.1 Data Technology Specification and Development Roadmap

Page 12 of 62

3.4 Streaming Data

In this section we present shortly the most popular data streaming API’s currently available. The
speed at which data is generated, consumed, processed, and analyzed is increasing at an
unbelievably rapid pace. The DMA demands data processing and analysis in near real-time.
Traditional big data-styled frameworks are not well-suited for these use cases. Multiple projects
have been started in the last few years to deal with the streaming data. All were designed to
process a continuous sequence of records originating from several sources. Our analysis mostly
focused on Apache based frameworks since these are the most popular solutions available. All
frameworks presented in the next paragraph use the Hadoop Distributed File System (HDFS) as a
standard. However, HDFS is just one of the file systems that supports the data process engines. The
data streaming api's can also use the ceph storage backend on which the current development is
focused on. Yet, the main benefit for running the Apache frameworks in distributed mode over a
Hadoop cluster is that you can take advantage of specific features like the ability to run multiple
types of workloads on the same data at the same time. As already mentioned earlier in the report,
HDFS is in planning for a secondary storage option which could be used as the dedicated backend
to process data streams.

 Table 1 gives a partial overview about the most promising candidates.

Streaming Open
Source

Licence
Type

Maturity Community
Support

Guarantees Other
comments

Apache Spark

http://spark.a
pache.org/

yes Apache V2 very high;
public
deployment
since 2010

very high Exactly-once Optimized for
processing batch
data

Apache Flink
https://flink.a
pache.org/

yes Apache V2 medium;
developed
since 2015

medium Exactly-once Optimized for
processing
streaming data

Apache
Storm
http://storm.a
pache.org/

yes Apache V2 very high;
public
deployment
since 2011

high At-least-once Pioneer in large
scale stream
processing

Table 1 Overview of the data streaming API’s.

To fulfill our requirements, to find a highly performant and reliable system with the ability to
process events, batch data and live streams at a consistently high rate with relatively low latency
we compare the different candidates using benchmark evaluations done by Yahoo and other
Companies. The streaming systems are compared using the maximum throughput while
maintaining the best possible fault tolerance. All experiments were run on the same cluster to
ensure a valid evaluation. It has to be noted that various systems approach problems fairy
differently and therefore it’s very hard to design not biased tests.

To define the best framework depends on the general requirements of the application. There are
different factors which have an influence in the decision, such as the performance, maturity and
community support. Spark is the most popular and mature data streaming framework. The
method has some micro-batching limitations and the latency is compared to the others rather
poor. However, for batch processing it is still the best option available. Spark batch processing
offers highest speed advantages, trading off against high memory usage. Flink is conceptually a

https://flink.apache.org/
https://flink.apache.org/
http://storm.apache.org/
http://storm.apache.org/

D5.1 Data Technology Specification and Development Roadmap

Page 13 of 62

great streaming system which fits very most streaming use cases and provides progressive
functionality, like advanced windowing or time handling. If this functionality is needed then Flink is
a good choice and it would outperform Spark and Storm in processing machine learning, graph
algorithms and relational queries. Storm is the only native streaming system. If the focus is mainly
on latency and near real-time processing then storm is probably the best choice and the most
mature option. It can guarantee message processing and can be used with a large number of
commonly used programming languages.

The best fit for the DMA will depend heavily upon the state of the data to process, how time-bound
the requirements are, and what kind of results the users are interested in. There are tradeoffs
between implementing an all-in-one solution and working with focused projects, and there are
similar considerations when evaluating their performances. For a detailed evaluation results of the
individual benchmarks we refer to the sources1.

3.5 Blockchain

We are presently experiencing “peak Blockchain” in the sense of the well-known Gartner hype-
cycle analysis. Significant venture capital (over one billion dollars) has already been invested in
Blockchain-related start-ups (primarily in, but not limited to, the United States). As a result, new
Blockchain projects are being published at a rate that is higher than could be feasibly evaluated by
the resources available in the DMA project. Our analysis has therefore been limited to a set of the
most well-known and established codebases but cannot be considered comprehensive.

Blockchain Open
Source

Licence
Type

Maturity Community
Support

Smart
Contract
Support

Other
comments

Bitcoin

https://bitcoin
.org/en

yes MIT very high;
public
deployment
since 2009

very high low;
Bitcoin
scripting
language is
not Turing-
complete

Optimized for
public network
and virtual
currency
application

Enigma

http://www.e
nigma.co/

no unknown
SaaS?

low;
beta
launched in
early 2016; no
information
available
about
deployment

low high;
includes the
concept of
private
contracts
(making use
of blockchain
states that
are not fully
public)

The only
solution that
also supports
Secure
Multiparty
Computation
(SMC)

Ethereum

https://www.e

yes GPL 3.0 high;
public
deployment

high high;
designed for
Turing-

Designed
specifically for
trusted code

1 https://data-artisans.com/extending-the-yahoo-streaming-benchmark/
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at

https://bitcoin.org/en/
https://bitcoin.org/en/
http://www.enigma.co/
http://www.enigma.co/
https://www.ethereum.org/
https://data-artisans.com/extending-the-yahoo-streaming-benchmark/
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at

D5.1 Data Technology Specification and Development Roadmap

Page 14 of 62

thereum.org/ since August
2014

complete
scripting
language

Hyperledger
Fabric

https://github.
com/hyperled
ger/fabric

yes Apache V2 low;
left incubator
phase on
2017-03-03

medium;
industry
support from
IBM and DAH

high;
“Chaincode”
is Turing-
complete and
supports
multiple
languages

Chaincode is
executed
locally and
results in key-
value “write
set” that is
applied to the
distributed
ledger

Hyperledger
Sawtooth
Lake

https://github.
com/hyperled
ger/sawtooth-
core

yes Apache V2 very low;
still in
incubator
phase

low;
very small
community
contributing
to codebase
and issue
tracker

medium;
so-called
“transaction
families” can
be custom
implemented
but this
requires
significant
know-how
and resources

Uses PoET
consensus
protocol (very
efficient) but
this requires
special CPU
hardware
support

Ripple

https://github.
com/ripple/ri
ppled

yes Ripple
(MIT-like)

medium;
exists since
2013,
deployed in
several
commercial
contexts

medium;
support
comes more
from a private
company
rather than a
community

low;
Codius smart
contract
project
discontinued
in 2015

Strictly
speaking,
Ripple makes
use of a “trust
graph” rather
than a
Blockchain

Regarding matching to requirements, we assume that all of the Blockchain or distributed ledger
technologies evaluated can support the decentralized resilience requirements, as this is
fundamental to their design and function. Almost all Blockchains offer an open source
implementation, with the exception of Enigma. We have included Enigma on the list in order to
highlight its unique support for Secure Multiparty Computation (SMC), which is a requirement
implied in the original proposal. We suggest that SMC must either be considered out of scope, or
must be implemented outside of the Blockchain context, as the proprietary nature of Enigma
makes it impossible to evaluate let alone integrate in the DMA technology foundation.

Given the remaining candidates, our decision will be based on three primary factors: maturity of
the solution, community support, and support for Smart Contracts. In terms of maturity, Bitcoin
(and its various derivatives) have a clear advantage, but the worst properties in terms of Smart
Contracts, because the Bitcoin scripting language is by design Turing-incomplete (it does not
support loops). The second candidate in terms of maturity is Ethereum, which has been publicly
deployed since August 2014. In addition to this advantage, Ethereum was developed specifically
with Smart Contracts in mind, although it should be noted that the manner in which code is
executed in an Ethereum network is both complex (involving the concepts of “gas” and “ether”)
and limited in computational power (often compared to a “Smartphone from 1999”). Hyperledger
Fabric has a very interesting approach to Smart Contracts (so-called “Chaincode”), but is rather
immature (having only been launched in March 2017) and lacks the wide community and tool

https://www.ethereum.org/
https://github.com/ripple/rippled
https://github.com/ripple/rippled
https://github.com/ripple/rippled

D5.1 Data Technology Specification and Development Roadmap

Page 15 of 62

support that exists for Ethereum. Hyperledger Sawtooth Lake is even less mature than Fabric and
would also require substantial investment in implementation and configuration to the extent that
it is no longer considered a feasible candidate. Ripple is a relatively mature technology with
commercial support, but has suspended development of its Smart Contract component.

4 Components

In this section the components which are developed in WP5 will be described in detail. The
components will be used to build the DMA ingest solution and will be integrated as REST services.
An exception is the “Semantic Enrichment component” which is developed in WP6. The integration
of this component is planned, but it will only be referenced in this section. Details about this
component have to be consulted in the corresponding deliverable D6.1.

The main service components (SC) which are going to be integrated into the dataset ingest
environment are listed in Table 2.

Component Service name Description

Conduit Dataset Ingest &
Preservation

Conduit Data ingest pipeline framework which is used to
perform a sequence of tasks needed for data
ingest.

Persistent Identifier PID-Service This component offers a service which allows
assigning a unique identifier to a data asset,
data catalogue, data set, or any other data
object contained.

Data Management GUI DM-GUI The Data Management GUI is a web user
interface which permits uploading, modifying or
removing submitted data assets. It provides
also user interface for accessing administrative
functions depending on the user role (DMA
platform user, DMA organisation, DMA
Administrator, etc.).

Blockchain Security &
Provenance

BC-Service The Blockchain Security & Provenance
component. It allows registering required
entities for data provenance capturing and
smart contracts in the blockchain distributed
database.

Data Quality DQ-Service This component allows improving the quality of
dataset submission by identifying issues in CSV
files like missing irregularity and encoding
issues, and tools for automatic normalisation of
data entities like
mapping to common date or time
representations and numeric formats.

Semantic Enrichment SE-Service Semantic enrichment of data is developed by
WP6 (task 6.3). The service will be integrated

D5.1 Data Technology Specification and Development Roadmap

Page 16 of 62

into the Conduit data set ingest pipeline.

Table 2 WP5 Components

In the following, these components will be described in detail.

4.1 Conduit Dataset Ingest & Preservation

The different components developed in WP5 and partly in WP6 will be integrated into a data ingest
pipeline processing framework named Conduit.1 This framework is a backend for asynchronous
task execution to perform data validation, transformation, quality enhancement and semantic
enrichment operations. These operations are implemented as individual tasks which can be
combined in data processing pipelines. It allows parallel processing of tasks on a cluster and is
available as a multi-container application (Docker containers). Figure 1 gives an overview about
the main components of Conduit. Starting with the box on the left side of the diagram, the user
interface, represented by the top layer, is a Python/Django-based web application which allows
managing the creation and transformation of data assets. The task execution backend,
represented by the bottom layer, is based on Celery, an asynchronous task queue. Tasks can be
assigned to Celery workers (green boxes with a "C") according to predefined queues which can
access the Ceph storage backend in order to perform data manipulation operations in the working
directory. The RabbitMQ2 messaging system is used by Celery as a messaging agent to handle task
execution requests, and the Redis3 key-value store is used as a result backend for task execution
metadata. The middle layer represents an optional layer based on Airflow, an Apache Incubator
project for workflow orchestration which integrates seamlessly with Celery.4

Figure 1 Overview about the main Conduit components used to create a data set ingest

processing pipeline

Figure 2 shows a basic version of a data ingest pipeline which is deliberately kept simple for
illustration purposes. It combines the tasks “Validation” to verify compliance regarding structural
requirements and metadata of a DMA data set submission, “Registration” for assigning a unique
identifier to a data set submission, “Data Quality improvement” for operations to to perform

1 https://gitlab.com/datamarket/conduit
2 http://www.rabbitmq.com
3 http://redis.io
4 https://airflow.incubator.apache.org

D5.1 Data Technology Specification and Development Roadmap

Page 17 of 62

migrations in order to make sure the datasets are available in appropriate formats and possibly to
improve the data itself, “Semantic enrichment” improve existing or create additional metadata,
“Packaging & Storage” to create a transferable entity of the datasets included in a data asset and
to transfer the data asset bundle to the storage backend.

Figure 2 Example of a data set ingest processing pipeline.

As already pointed out, depending on the type of data and metadata available in a submission, this
basic workflow is going to be extended by additional steps, such as “metadata extraction”, “data
set encryption” and other data set type specific operations.

The backend can also be controlled via remote command execution without using the web
frontend. Outcomes of operations which are performed by a task are persisted in the working
directory of the dataset submission process.

The data set ingest is implemented as a set of backend Celery tasks. These tasks can be executed
using the web application frontend, by invoking the tasks in headless mode. The tasks can also be
combined as pre-defined workflows for batch processing which executes a chain of tasks for
automatic data set ingest.

The data ingest processing pipeline is an extensible, data-oriented workflow which can be adapted
to specific needs by inserting new tasks at any point of the workflow. According to the Unix maxim
to “make each program do one thing well”1, the ingest process is divided into a set of atomic tasks
which perform a specific validation, transformation, or enrichment step. However, each processing
step does not necessarily execute one single action, but can initiate a series of tasks or a complete
workflow as well.

1 The Bell System Technical Journal. Bell Laboratories. M. D. McIlroy, E. N. Pinson, and B. A. Tague. “Unix Time-
Sharing System Forward”. 1978. 57 (6, part 2). p. 1902.

D5.1 Data Technology Specification and Development Roadmap

Page 18 of 62

4.1.1 Web user interface

The user interface is a Python/Django-based web application. It consists of the Conduit admin user
interface which can be used to test individual tasks of the dataset submission pipeline for the
creation, validation, transformation, and enrichment of data assets. Part of this pipeline creation is
also the integration of service invocations, such as the metadata enrichment workflow, for
example (see deliverable D6.1, section 5.3, Figure 2).

Furthermore, the web application includes a wizard-assisted dataset upload user interface where
at least the obligatory metadata must be provided. Apart from the dataset upload, there are other
means to prepare a dataset submission for a DMA node. For example, data can be provided by
harvesting from external sources or created by custom batch creation.

4.1.2 Validation

The DMA project develops an agreed-upon set of metadata which allows a collaboration with
international data portals, for example the Industrial Data Space (IDS) of the European
Commission. In cooperation with WP 6 and 7 a metadata core for the DMA is being defined which
covers the minimum requirements needed to publish and process data using the DMA platform. It
is inspired by the W3C Data Catalog Vocabulary (DCAT)1 metadata standard for describing datasets
in order to lay the ground for enabling interoperability. The DMA metadata core establishes classes
and properties for describing datasets and services that are accessible on the DMA. However, it
does not provide a formal, complete definition of all necessary dimensions for describing datasets.
Instead, it provides the means by which dataset and service descriptions can be made discoverable
on the DMA. That way, it is possible for users of DMA to find and retrieve datasets and services, as
well as to judge their suitability for a particular purpose.

In alignment with the terminology used in this DCAT standard, WP5 uses the term “catalogue” to
denote the encapsulating entity of a collection of datasets. A data set submission denotes the
bundle consisting of the catalogue with associated metadata. The catalogue consists of a series of
datasets and each data set has data items, documentation, and data set specific metadata.

As an example, let us assume a data set submission consists of a catalogue with two datasets. One
data set with the data file example1.csv and the other one with the data file example2.csv.
Additionally, each data set has documentation (documentation1.odt and
documentation2.odt respectively) and data set specific metadata files (specific1.xml and
specific2.xml respectively). Finally, the catalogue metadata is a file named dcat.xml. Figure 3
shows the structure of this dataset submission.

1 https://www.w3.org/TR/vocab-dcat/

D5.1 Data Technology Specification and Development Roadmap

Page 19 of 62

A dataset ingest process starts with a dataset submission. All operations of a dataset submission are
executed in a working directory. It does not matter if the directory is populated using the data set
upload forms of the user interface, or if they have been provided by transferring it as a packaged
entity (created separately e.g. by batch creation). Data can also be provided by indicating external
source locations from where the datasets can be harvested. The only requirement is that structural
and metadata requirements must be fulfilled, i.e. the dataset submission must pass the validation
procedure successfully. This means that any transformations which are required to create a valid
dataset submission (e.g. metadata mappings) must be made in the “pre-ingest” phase, i.e. before
the dataset ingest process starts.

The “catalogue” entity may contain any number of data set entities. For example, they could
contain CSV files available in different languages or a set of geographic data files in different
formats which are described by DCAT metadata and optionally other descriptive metadata
available in the metadata directory.

The DCAT metadata is validated to verify formal validity and completeness. First of all, it will be
checked if the obligatory metadata elements are provided. Furthermore, it will be checked for
completeness, i.e. if each dataset which is part of the catalogue is referenced by the metadata and
vice versa, if each file which is referenced is also available in the catalogue.

4.1.3 Semi-automatic metadata extraction and generation

See deliverable 6.1 task 6.3 “Semantic Enrichment and Linking of Data” for details about the
functioning of the Semi-automatic metadata extraction and generation component.

4.1.4 Persistent storage

Each dataset ingest process has a process identifier (UUID) and a corresponding working directory
which is used as long as the ingest process is not finalized.

dataset submission/
├── catalogue
│ ├── dataset 1
│ │ ├── data
│ │ │ └── example1.csv
│ │ ├── documentation
│ │ │ └── documentation1.odt
│ │ └── metadata
│ │ └── specific1.xml
│ └── dataset 2
│ ├── data
│ │ └── example2.csv
│ ├── documentation
│ │ └── documentation2.odt
│ └── metadata
│ └── specific2.xml
└── metadata
 └── dcat.xml

Figure 3 Dataset submission consisting of the
Catalogue including the datasets and with associated

metadata.

D5.1 Data Technology Specification and Development Roadmap

Page 20 of 62

Data validation, transformation, and manipulation operations are executed in this working
directory which contains the catalogue including the datasets and the metadata directory. When
the ingest process is finished, the catalogue and metadata will be aggregated as a data asset and it
must have a persistent identifier (PID) which is different from the process identifier (UUID).

Once the dataset ingest process is finished, a PID for the digital asset is created according to the
rules explained in section 4.2.2, for example:

 ait:168bc315a2ee09042d83d7c5811b533620531f67

The PID is used to derive the folder name of the data asset which would then have the following
name1:

 ait=168bc315a2ee09042d83d7c5811b533620531f67

In a final step the datasets contained in the data asset are packaged (in tar or tar.gz format) and
the data asset bundle is transferred to the storage area.

Figure 4 illustrates these concepts.

Figure 4 Dataset ingest process starting with a dataset submission to create a data asset and

data asset bundle.

Data assets have a life-cycle and can be changed and there is a distinction between two cases:

As illustrated in Figure 5, an edit operation does not change the content in a way that it is necessary
to assign a new persistent unique identifier. A new version of the data asset is created in this case.
This can be a metadata correction or a format conversion which is supposed not to have any
impact on the actual content. There will be a difference due to edit or conversion operations,
however, the data asset can still be regarded as being “the same data asset” compared to the
previous version.

Figure 5 An edit operation creates a new version of a data asset. The persistent unique
identifier (PID) remains the same.

1 The identifier string is adapted according to According to the Pairtree specification, i.e. the slash ‘/‘ is
replaced by the ‘=’ sign and ‘. This is explained in the following.

Data asset A
Version 1

Data asset A
Version 2

edit

Current PID Current PID

D5.1 Data Technology Specification and Development Roadmap

Page 21 of 62

As illustrated in Figure 6, a fork operation changes the content of the data asset and thereby
creates a new data asset derivative. The difference to the source data asset(s) is different to a
significant extent so that the new data asset cannot be regarded as being “the same data asset”
compared to the previous version.

Figure 6 A fork operation creates a new data asset which gets a new persistent unique
identifier (PID)

The data asset derivative keeps the provenance relation to the original datasets it was derived
from. Fork operations can also reference several source datasets as shown in Figure 7.

Figure 7 A fork operation can reference multiple source data assets.

Data asset bundles will be stored using the Python-based Pairtree File System implementation1 of
the Pairtrees for Collection Storage specification2. It is used to store the physical representation of a
data asset bundle in a file system. The Pairtree is a filesystem hierarchy for storing dataasset
bundles where the unique identifier string of the object is mapped to a unique directory path so
that the file system location of the object can be derived from the identifier string. Basically, the
identifier string is split each two characters at a time and the object folder has by definition more
than two characters. Furthermore, the specification defines a mapping of special characters to a
set of alternative characters in order to ensure file system level interoperability.

As an example, let us assume the following path to be the root folder of the Pairtree storage:

/var/data/dma/storage/pairtree_root

Furthermore, we assume that a data asset bundle is associated with the following identifier:

ait:168bc315a2ee09042d83d7c5811b533620531f67

Following the method defined by the Pairtree specification, this identifier is mapped to the
following path:

ai/t=/16/8b/c3/15/a2/ee/09/04/2d/83/d7/c5/81/1b/53/36/20/53/1f/67

1 https://pypi.python.org/pypi/Pairtree
2 https://wiki.ucop.edu/display/Curation/PairTree?preview=/14254128/16973838/PairtreeSpec.pdf

Data asset A
Version 1

Data asset B
Version 1

fork

Current PID New PID

Data asset A
Version 1

Data asset C
Version 1

fork

Current PID 1

New PID

Data asset B
Version 1

Current PID 2

D5.1 Data Technology Specification and Development Roadmap

Page 22 of 62

and the actual data asset bundle is stored in a “data” folder which represents the leaf node of the
Pairtree file system hierarchy.

The leaf node contains one or possibly more sub-directories (5-digits fixed length zero-filled
number) for the versions of the data asset.

The full path to the data asset bundle is then as follows (to be read as a single line string):

/var/data/dma/storage/pairtree_root/ai/t=/16/8b/c3/15/a2/ee/09/04/2d/
83/d7/c5/81/1b/53/36/20/53/1f/67/data/00001/

Figure 8 shows the data asset bundle consisting of a set of packaged datasets and the catalogue
metadata.

For example, the full path to access the metadata file of this data asset bundle would be (to be
read as a single line string):

/var/data/dma/storage/pairtree_root/ai/t=/16/8b/c3/15/a2/ee/09/04/2d/
83/d7/c5/81/1b/53/36/20/53/1f/67/data/00001/ait=168bc315a2ee09042d83d
7c5811b533620531f67/metadata/dcat.xml

The purpose of the Pairtree storage backend is to allow a large number of data asset bundles to be
stored in a file system and permit fast access to individual datasets contained in a data asset
bundle.

4.2 Long-term preservation and data citation components

4.2.1 Long-term preservation

The minimum requirement regarding long-term preservation is to ensure "bitstream
preservation". Bitstream preservation denotes the ability to deal with data loss due to hardware or
storage media failure and provides the means to restore the exact copy of a data file in case of data
loss or file corruption. This requirement is addressed by using a storage backend which stores
copies of data redundantly and allows detecting bit corruption by continuously comparing the
signatures of replicated data files.

To ensure access and interpretability of stored datasets, it might be necessary to take advanced
measures. The most prominent strategies to ensure render-ability of outdated file formats are
"emulation" and "migration". The "emulation" approach essentially simulates an environment in
which the file format was originally used. The “migration” approach creates an up-to-date
derivative. In the DMA project, only the latter is supported.

In a broader sense, "migration" means to renew the technological environment to support the
usage of data files in an up-to-date hard-/software environment. In a narrower sense and as it will
be used in the context of DMA, "migration" means that data is converted from one data format to
another in case the current data format is not considered adequate for future usage scenarios.

ait=168bc315a2ee09042d83d7c5811b533620531f67/
├── catalogue
│ ├── dataset 1.tar
│ └── dataset 2.tar
└── metadata
 └── dcat.xml

Figure 8 Data asset bundle consisting of two packaged
datasets with metadata

D5.1 Data Technology Specification and Development Roadmap

Page 23 of 62

As a basis to support data format migrations, the Open Source software FIDO1 is used to determine
the Pronom Unique Identifier (PUID)2, a file format identifier based on the PRONOM technical
registry 3, for each individual data file which is part of a data set submission.

Conduit includes tasks for performing policy-based data format migrations based on PUIDs
identified in a dataset submission. A set of tasks allows executing migrations according to
predefined migration rules. A specific task queue can be defined for file format migrations in order
to avoid that the main ingest pipeline is blocked by large numbers of data file migrations which
need to executed in the background. Progress of migrations can be checked by invoking a REST
service.

4.2.2 Persistent unique identifier (PID)

The Persistent Unique Identification (PID) component allows requesting identifiers and assigning it
to data assets, services, and other DMA entities. In WP5 the default case is that a PID resolves to the
URL of a DCAT metadata file of a data asset.

Originally, WP5 considered using the Invenio-PIDStore4 as a core component for persistent
identification. However, the fact that blockchain technology is used to capture the provenance, the
alternative to develop a service which integrates with the blockchain layer will be taken into
consideration. This would mean that data assets and services receive a blockchain address which
is the basis to create the persistent unique identifier. By this way it is ensured that a tamper-proof
provenance track of operations related to registered objects can be established.

Specific operations related to a data asset will be relevant regarding the persistent identification of
the data asset.

The data asset which is identified by a persistent unique identifier (PID) may be subject to changes.
However, not every change leads to the assignment of a PID as this would conflict with the
requirement of using a stable PID URI for citation. A spell error correction in the metadata, for
example, will not lead to a PID change because the underlying data asset is supposed to be “the
same” as before.

However, if metadata of the data asset is changed which are of significance regarding the data
asset provenance (e.g. data asset creator, publisher, etc.), then this change will be recorded and a
new version of the data asset will be created. Even though this operation leads to the assignment
of a new blockchain address in the provenance track, the PID always relates to the first version of
the data asset.

If the content (i.e. one of the datasets included in an existing data asset) is changed, two types of
operations are distinguished. An “edit” operation does not represent a significant change
regarding the content of the data asset. It will lead to a new version and the PID will remain the
same. If the content is going to be changed significantly, then a “fork” operation is required which
leads to the assignment of a new PID while the relationship to the original data asset is recorded.
Usually, changing the content of a data asset leads to a new PID assignment. However,
maintenance activities or preservation measures may be necessary which are “content edit”
operations that do not lead to the assignment of a new PID.

1 https://github.com/openpreserve/fido
2 http://www.nationalarchives.gov.uk/aboutapps/pronom/puid.htm
3 http://www.nationalarchives.gov.uk/PRONOM
4 https://invenio-pidstore.readthedocs.io/en/latest/

D5.1 Data Technology Specification and Development Roadmap

Page 24 of 62

The persistent identifier (PID) is composed of a namespace string corresponding to the member
organization and the digital object identifier hash of the following form

 {member-organization-namespace-string}:{data-asset-id}

For each PID there is a corresponding PID URI which is assigned to the metadata record of the data
asset. This PID URI is used for dissemination purposes and in the context of semantic web and has
the following form:

 info:dma/{member-organization-namespace-string}:{data-asset-id}

Let us assume the organization AIT Austrian Institute of Technology GmbH got assigned the
namespace string “ait” and it has generated the identifier hash
“168bc315a2ee09042d83d7c5811b533620531f67” for a data asset, then this would entail the
following URI:

 info:dma/ait:168bc315a2ee09042d83d7c5811b533620531f67

4.3 Data Management GUI

The data management GUI will support the upload of datasets and the registration of data access
endpoints including all CRUD operations (Create, Read, Update, Delete).

The interface will be build using Django as Python Web framework and AngularJS.

The following mockups give an insight into the data management GUI planning. A wizard-type data
upload form guides users step-by-step through the upload process.

Figure 8 shows the first step of the dataset upload wizard-type data upload form. The purpose of
this step is to collect basic catalogue metadata.

Figure 9 First step of the dataset upload wizard-type data upload form: Basic catalogue

metadata

D5.1 Data Technology Specification and Development Roadmap

Page 25 of 62

Figure 9 shows the second step where the data provisioning method is selected. Data items can be
uploaded as individual data file items (“Upload resource”), as a resource bundle (“Upload resource
bundle”), by indicating a harvesting URL (“Indicate URL where the resource bundle can be
downloaded”), by referring to an externally hosted data set (“Add reference to external dataset”),
or by adding streaming data endpoints (“Add reference to streaming data endpoint”).

Figure 10 Second step of the dataset upload wizard-type data upload form: Select data

provisioning method

Figure 10 shows the thirds step which corresponds to the first option shown in Figure 9 “Upload
resource”. It allows adding a dataset resource with associated metadata. Note that regarding the
first three options the result is that the actual data to start the dataset submission process is
available. For the other two options there is no need for storing actual data. Only metadata about
externally available datasets or as streaming data endpoints are provided in that case.

Figure 11 Third step of the dataset upload wizard-type data upload form: Add dataset item

with metadata

4.4 Blockchain components for security and provenance

Membership
Based on our requirements, we intend to deploy a private (permissioned) Blockchain. The
collection of organizations participating in this private Blockchain will be known as the Blockchain
Network. We intend to use the Blockchain itself to regulate the participation in the Blockchain
Network. This innovation counters a drawback of typical permissioned systems, in which the entity

D5.1 Data Technology Specification and Development Roadmap

Page 26 of 62

that controls membership to the network enjoys a powerful and privileged central role, which in
turn negates the presumed advantages of a decentralized system.
In order to implement a decentralized membership approval model, it will be necessary to
introduce the “Organization” entity and this entity must have various types:

• Candidate Organization: a serious (trusted) organization that has been suggested for
membership or has requested membership in the DMA network.

• Member Organization: An Organization that was either a Founding Organization or
Candidate Organization that were voted in by existing Member Organizations.

• Founding Organization: the original members of the DMA project consortium. We must
define this role in order to bootstrap the network membership and instantiation of the
Blockchain nodes.

We will then introduce a voting protocol (in the form of a Smart Contract) that will admit (or deny)
Candidate Organisations through transparent and irrevocable votes of the existing Members
recorded in the Blockchain. A successful vote will result in a Candidate automatically becoming a
Member.

Once an Organization has be established as a Member Organization, it can create Agents
(individual user accounts) that can act on behalf of the Organization as for example Dataset
curators or Service developers.

4.4.1 Deployment

The private DMA Blockchain is instantiated by a collection of DMS Nodes that all operate on the
identical Genesis Block. DMS Nodes are Member Organizations, each of which must deploy an
instance of the DMA Technology Foundation Stack (DTFS) under their control (as discussed in more
detail in sections below). Every instance of the DTFS includes the DMA Blockchain component.

As subset of DMS Nodes will also be Mining Nodes. Mining Nodes are those nodes that also run
Blockchain “miners”, that is, those processes that validate transactions blocks in the system. As
these systems require more computational power, we assume that the initial Mining Nodes will be
instantiated at the three cloud installations foreseen by the project plan (the EODC, Catalysts, and
T-Systems installations).

An additional special Blockchain node, the Bootstrap Node, must also be deployed (presumably at
the central DMA instance that also hosts the portal application) in order to coordinate access to the
peer-to-peer network.

4.4.2 Decentralized registry

The DMA Blockchain will be used as a decentralized registry for the primary entities in the DMA
ecosystem. All entities will be assigned permanent identifiers when instantiated, and these
identifiers will be stored in the DMA Blockchain; or, alternatively, Smart Contracts representing
these entities will be stored in the Blockchain. Based on our requirements analysis, we conclude
that the initial necessary fundamental entities are:

• Organizations: these are the legal entities that publish datasets and services and employ
Agents.

• Agents: these are human beings that act on behalf of an organization. Agents for example
curate datasets, develop services, or make use of datasets and services.

• Datasets: these are collections of digital information or objects that are published by
Organizations and Curated by Agents.

D5.1 Data Technology Specification and Development Roadmap

Page 27 of 62

• Services: these are software applications that are developed by Agents, published by
Organizations, and operate on Datasets.

4.4.3 Provenance storage

Provenance documents the inputs, actors, systems, and processes that influence entities of
interest, in effect providing a historical record of the entity and its origins. The permanent and
irrevocable nature of Blockchain transactions makes them a good candidate for provenance
tracking. However, this requirement implies that, in addition to storing entities themselves, the
DMA Blockchain must also store transactions related to entities. Examples of such transactions
would be:

• An Organization defines an Agent to be the curator of a Dataset
• An Agent forks an existing Dataset to create a new Dataset
• A Service accesses a Dataset
• A Service changes a Dataset (through semantic enrichment for example)

This in turn implies that these transactions must be modelled in the Blockchain, either through the
core transaction model or through Smart Contracts. This aspect will be addressed in detail in DMA
Deliverable D5.2.

4.4.4 Data set authenticity

Data authenticity means that a digital object is indeed what it claims to be or what it is claimed to
be. Digital data can be assumed to be authentic if it is provable that it has not been corrupted after
its creation. It is thereby clear that the provenance of DMA Datasets is a necessary but not sufficient
condition for demonstrating authenticity. In order to complete the authenticity requirement, we
need a mechanism for determining that a Dataset has not been altered, and linking this
determination with the provenance mechanism.

One candidate technology for this would be hash encoding or hashing. Hashing is the
transformation of a byte array into a shorter fixed-length value that represents the original digital
object. A good hashing algorithm is (a) fast, (b) irreversible (it is not possible to deduce the original
content from the hash value), and (c) unique (no two digital objects will produce the same hash
value, or at least it is very unlikely to happen). Hashing is a key technology in Blockchains already
and could also be applied to some Datasets.

We suggest the following approach: when a Dataset is created (that is, registered and potentially
uploaded to the DMA network), a unique identifier is minted (as discussed in the Persistent Storage
section above). At the same time, a hash value would be computed for the Dataset. This hash value
would then be stored in the Blockchain as an attribute associated with the identifier. If a Dataset is
altered, a new hash value is calculated, and this value is registered in the blockchain as a new
version of the dataset (still associated with the original identifier). If a Dataset is forked, a new
identifier is minted, and the hash value is stored with the new identifier, along with a reference to
the identifier of the parent Dataset.

The drawback of this approach is that it is not idea for very large datasets (as it would take too
much computational power to calculate the hash value) and it is inapplicable to dynamic datasets
(as these would yield a different hash value each time the dataset changes) or data streams (for the
same reason as dynamic datasets, but in this case the dataset could change even during the hash
computation, making the hash value meaningless).

D5.1 Data Technology Specification and Development Roadmap

Page 28 of 62

4.5 Data quality enhancement

As data quality was identified as a key aspect regarding requirements in a community-driven data-
services ecosystem (see WP2, D2.2.), the following section provides an initial set of dimensions and
metrics to assess issues in the existing metadata, as well as suggestions regarding the automated
correction of issues within datasets. The referred metadata fields are taken out of the initial core
set of the DMA metadata specification. As a defined and finalized list of data to be treated is not yet
available, the suggestion for automated correction of datasets is demonstrated on the example of
comma-separated value (CSV) files. Furthermore, additional data quality improvement methods
will be provided via semantic enrichment of the given datasets (WP6, T6.3).

4.5.1 Data quality assessment

The following section describes the initial list of data quality assessment metrics, based on
available metadata fields out of the core metadata set of DMA. Each metric is described along its
dimension, how to measure it, and what specific metadata fields are required for the assessment
(see Table 3)

ID Dimension
Definition

Metric
Definition

Involved Metadata field(s) Type of
metadata

#DQ1 Header
Completeness

Level of
completion of

metadata fields

Dataset::all mandatory Mandatory

#DQ2 Understandability Check
complexity of

dataset
description

Dataset::Description Mandatory

#DQ3 Contactability Provision of
required

contact details

Dataset::Contact Point Recommended

#DQ4 Temporal
cohesion

Check whether
stated temporal

coverage is in
line with

release date

Dataset::Release date
Dataset::temporal coverage

Recommended

#DQ5 Openness Level of open
definition

compliance

Dataset::License Optional

#DQ6 Language match Does the
language of the

dataset
matches the

language field
of the metadata

Dataset::Language Optional

#DQ7 Currentness Time between Dataset::Frequency Optional

D5.1 Data Technology Specification and Development Roadmap

Page 29 of 62

planned update
and current

version

Dataset::Last update/mod
date

#DQ8 Format
compliance

Check whether
the dataset is in

the stated
format

Dataset::Format Optional

Table 3 Data quality dimensions and metrics

#DQ1 – Header Completeness: This metric measures the completeness of all mandatory
metadata fields of a given dataset. The completeness is stated in %, based on the total amount of
the existing mandatory metadata fields:

 𝑯𝑯𝑯𝑯𝑯𝑯 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 = # 𝒐𝒐 𝒇𝒇𝒇𝒇𝒇𝒇 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒇𝒇𝒇𝒇𝒇𝒇
𝒐𝒇 𝒕𝒕𝒕𝒕𝒕 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒇𝒇𝒇𝒇𝒇𝒇

∗ 𝟏𝟏𝟏

#DQ2 - Understandability: This metric measures the complexity of a given dataset description in
terms of readability and therefore its understandability. As actual measurement, the
Laesbarhedsindex (LIX)1 is suggest, as it is particularly suitable for Western European languages:

𝐿𝐿𝐿 = (𝑤𝑤𝑤𝑤𝑤 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 100 ∗
𝑤𝑤𝑤𝑤𝑤 > 6 𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑤𝑤𝑤𝑤𝑤

The results can be ranked according to the schema shown in Table 4:

Score Assessment

0-24 Very easy

25-34 Easy

35-44 Standard

45-54 Difficult

55+ Very difficult

Table 4 LIX complexity score ranges

1 Reck, R. P., & Reck, R. A. (2007). Generating and rendering readability scores for Project Gutenberg texts. In
Proceedings of the Corpus Linguistics Conference. pp. 1-18

D5.1 Data Technology Specification and Development Roadmap

Page 30 of 62

#DQ3 – Contactability: This metric assesses the availability of contact information regarding the
person responsible for the given dataset:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = {0,𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 | 1, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎}

#DQ4 – Temporal cohesion: This metric evaluates for the description of the temporal coverage of
the dataset (i.e., which time frame the data within the dataset cover) and the actual release date of
the dataset being logical consistent (i.e., the dataset cannot be released earlier than the latest
datum within the dataset).

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒 = {0, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛 𝑔𝑔𝑔𝑔𝑔 | 1, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑔𝑔𝑔𝑔𝑔}

#DQ5 - Openness: This metric assesses the openness of a given dataset according to the attached
license. As a quantitative representation of openness is challenging, a star-based rating system is
proposed, which is reduced according to the level of restriction applied to the use of the dataset by
the license.

License Star-based rating

CC-Zero 5 (star)

CC-BY 4 (star)

CC-BY-SA 3 (star)

CC-BY-NC 2 (star)

CC-BY-NC-ND 1 (star)

#DQ6 – Language match: This metric compares the language which is stated in the metadata of a
given dataset with the actual language being present within the dataset.

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑚𝑚𝑚𝑚ℎ
= {0, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 𝑛𝑛𝑛 𝑚𝑚𝑚𝑚ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 | 1, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝑚ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚}

 #DQ7 - Currentness: This metric describes the currentness of a given dataset decreasing over
time. Along the definition of Atz (2014), the currentness can be formulated for a given dataset as
follows:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝜏 =
𝑢𝑢𝑢𝑢𝑢𝑢 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝜆 + 𝛿
𝑡𝑡𝑡𝑡𝑡 − 𝑙𝑙𝑙𝑙 𝑢𝑢𝑢𝑢𝑢𝑢

 Where denotes a fixed period of time, common for all dataset, regarding the required processing
to be made available, while denotes the update frequency (i.e., as provided in the Dublin Core
description)

D5.1 Data Technology Specification and Development Roadmap

Page 31 of 62

Update frequency Days 𝜆

Daily 1 1

Weekly 7 1,1

Monthly 30 1,15

Table 5 Update frequencies according to Dublin Core

#DQ8 – Format compliance: This metric compares the actual format of a given dataset and
compares it with the format stated in the respective metadata field of the dataset.

 𝐹𝐹𝐹𝐹𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = {0,𝑓𝑓𝑓𝑓𝑎𝑎 𝑑𝑑𝑑𝑑 𝑛𝑛𝑛 𝑚𝑚𝑚𝑚ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚| 1,𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚}

4.5.2 Data quality improvement

4.5.2.1 CSV validation & correction

One of the most common dataset formats on the web are comma-separated value (CSV) files. A
suitable candidate for the validation of CSV files is, e.g., CSV Lint1 by the Open Data Institute (ODI).
It checks a given CSV file along the specifications stated in RFC 41802 . It provides feedback in three
different dimensions (i.e., errors, warnings, and additional messages) (see Figure 11), with a listing
of all issues along these dimensions, what the problem is, how to possibly solve it, and where it is
located in the given CSV file (see Figure 12).

Figure 12 Reporting dimensions of CSV Lint (example taken from CSV Lint website)

1 https://csvlint.io
2 https://tools.ietf.org/html/rfc4180

https://csvlint.io/
https://tools.ietf.org/html/rfc4180

D5.1 Data Technology Specification and Development Roadmap

Page 32 of 62

Figure 13 Detailed description and suggestions for resolving found identified issue

Regarding the automated correction of CSV files, there arise several challenges, which only some
can be tackled without the danger to compromise the data within the file. These are mostly related
towards fixing format-related issues, along with encoding issues present in the file. Such fixes can
be, e.g., removal of optional quote characters, changing the field delimiter to a RFC-compliant
format, fixing quote characters to standardized double quotes, as well as setting the encoding to
the proper UTF-8 format. A candidate for performing these automated correction comes in form of,
e.g., csvkit1.

5 Services

In this section an overview about the ingest services provided on top of the ingest components is
given. The first section explains the context of the ingest services in the DMA data market
ecosystem. The second section explains the dataset ingest pipeline as the core technology
developed by WP5. The third section is a first draft of the Service Interface Specifications (REST)
provided by WP5.

5.1 Context

The deployment of services depends on the type of DMA Node which is a deployment instance
participating in the DMA Austrian Data-Services Ecosystem, i.e. a stack of services deployed on IT
infrastructure which is either available in house or being made available by a DMA compliant cloud
infrastructure provider.
As illustrated in Figure 13, the stack of services deployed on a node depends on the type of node.
On the right side of the diagram, there is a “DMA Data Provider node” (DP) which includes the
obligatory object and metadata store and blockchain service layer as well as a set of additional
services required to fulfil the requirements for data provisioning. And on the left side there is the
“Central DMA Node” which, additionally to the DMA core services, provides central services for
“Billing”, “Security & User Management”, and “Search & Recommendation”.

1 https://csvkit.readthedocs.io/en/1.0.2/index.html

D5.1 Data Technology Specification and Development Roadmap

Page 33 of 62

Figure 13 also shows that the data objects can be available in specific nodes only. In this example,
the data asset bundle “A” is available in the object store of the central DMA node only and data
asset bundles “B” and “C” are available on the “DMA data provider (DP) node”.

However, metadata about the availability of data packages available in the different nodes is
stored and synchronized across all participating nodes of the federated DMA. This means that
every node “knows” about data assets available in the DMA environment. The same applies for the
distributed blockchain database which captures the provenance and logs exchange and usage of
data assets.

Figure 14 Central node and DMA node to illustrate the fact that data asset bundles can be
available in specific object nodes only, whereas the metadata and transaction records

metadata is synchronized between all nodes.

5.2 Data Set Ingest Pipeline

Services for data ingest can be connected into a dataset ingest pipeline using Conduit. Figure 14
shows an example of such a processing chain, including service invocations for “Validation”,
“Registration”, “Semantic Enrichment”, “Preservation”, and “Packaging & Storage”. The chain of
services is provided as a set of modular tasks which can be extended or organized in a different
order. Service endpoints for one or different data ingest pipelines are available.

D5.1 Data Technology Specification and Development Roadmap

Page 34 of 62

Figure 15 Example of a dataset ingest pipeline using Conduit

Figure 14 also illustrates that some of the tasks, such as the “Validation”, “Preservation”, and
“Packaging & Store” tasks, are implemented directly in Conduit, while other tasks, such as
“Registration”, “Data Quality Improvement”, and “Semantic Enrichment” tasks, invoke other
services. Service invocations are always asynchronous. However, the pipeline processing only
continues only if preconditions are fulfilled. For example, the execution of predecessor task must
have been successful, otherwise the dataset ingest process is in a fault state. Service functions for
polling the task processing status provide the required information to decide if the next step in the
processing pipeline can be started.

The PID-Service and DQ-Service modules are developed in WP5, and the SE-Service is developed in
WP6 (task 6.3). Conduit integrates with the Blockchain Security & Provenance to allow provenance
capturing throughout all the processing steps being executed as part of the dataset ingest process.

The dataset ingest process ends if the data asset bundle is stored in the object store of the DMA
node. The final status of the data asset is a catalogue metadata file together with a set of packaged
datasets (in tar or tar.gz file format).

Creating the data asset bundle including metadata and packaged datasets is done because of the
following reasons:

• It allows efficiently accessing and downloading selected datasets (because individual
datasets contained in a data asset might be very large).

• It supports the integration with the blockchain layer because checksums for packaged
datasets can be generated and stored in the blockchain.

• It makes metadata management more convenient because the metadata can be kept
separate from the datasets (and metadata edits do not entail blockchain operations).

• The data asset bundle can be shared or synchronized more easily between DMA nodes
because the transfer of a packaged dataset is more efficient compared to transferring the
contained files individually.

Conduit

Dataset Management GUI/

Validation Data Quality
Improvement Registration Semantic

Enrichment Preservation Packaging &
Storage

Blockchain Security & Provenance Service

DQ-Service PID-Service SE-Service

New dataset
submission

Fork existing
data asset

D5.1 Data Technology Specification and Development Roadmap

Page 35 of 62

5.3 Service Interface Specifications (REST)

The purpose of the following REST API service specification is to provide the basic definitions for an
implementation using the OpenAPI Specification1, formerly known as the Swagger API framework2.
It provides a standard, language-agnostic interface to define REST APIs. Code can be generated for
a variety of programming languages. The Django REST framework3 will be used as the toolkit for
building the Web API.

Note that most of the REST service operations specified in this section are supposed to be
executed in an asynchronous manner as illustrated in Figure 15.

Figure 16 Asynchronous task execution

The request to execute a task is submitted and in case of success the response returns a job ID
(job_id) which allows querying the job status. Querying the job status can be repeated until the job
status is “SUCCESS”, in this case the response can return additional task specific results. This
example represents the successful job execution. Failures can occur when submitting the job
request or when polling the job status.

See Appendix A “HTTP Status Codes” to see the full list of HTTP Status Codes used in this
specification.

5.3.1 Data set ingest services

5.3.1.1 Default ingest pipeline
The default ingest pipeline allows executing a predefined ingest workflow that operates on a
working directory where datasets including the required metadata is available. The workflow
ends with the data asset available in the local data store with a PID assigned.

1 https://github.com/OAI/OpenAPI-Specification
2 http://swagger.io
3 http://www.django-rest-framework.org

D5.1 Data Technology Specification and Development Roadmap

Page 36 of 62

5.3.1.1.1 Initialize new dataset submission process

Starting a new dataset submission process means assigning a process ID (process_id parameter
which is a UUID). The process ID corresponds to a working directory on the DMA node which might
get initialized by a scaffolding (folder structure) for data and metadata and initial metadata files.
The process ID is only used to identify a dataset submission process in the context of a DMA node.
Once the data asset is created and identified by a persistent unique identifier, the process ID is no
longer of importance.

Request

Method URL

POST api/v1.0/datasetsubmissions/

Parameters/Request Body

Type Params

HEAD auth_key

auth_key
The auth_key that was given in response to /api/login

Response

Status Response

202 An example response is:

{
 "message": "Dataset submission process initialization
 request submitted successfully.",
 "job_id": "9c71f1f5-9c15-4d90-952e-959c8b16d0a7"
}

Result can be obtained by job status request (using job_id):

{

 "success": true,
 "message": "Dataset submission process initialized
 successfully.",

 "process_id": "5f71d1d3-1a16-2d44-362e-959c8b16d0b8"
}

400 {"error":"Process ID does not exist."}

401 {"error":"Unauthorized. Auth key is missing"}

500 {"error":"An error occurred."}

D5.1 Data Technology Specification and Development Roadmap

Page 37 of 62

5.3.1.1.2 Perform dataset ingest

Request

Method URL

POST api/v1.0/datasetsubmissions/<process_id>/

Parameters/Request Body

Type Params

HEAD auth_key

GET process_id

auth_key
The auth_key that was given in response to /api/login
process_id
The process_id Process ID of the dataset submission.

Response

Status Response

202 An example response is:

{
 "message": "Ingest job start request submitted
 successfully.",
 "job_id": "9c71f1f5-9c15-4d90-952e-959c8b16d0a7"
}

Result can be obtained by job status request (using job_id):

{

 "success": true,
 "message": "Ingest job finished successfully.",

 "pid": "info:ark/ait/168bc315a2ee09042d83d7c5811b533620531f67"
}

400 {"error":"Process ID does not exist."}

401 {"error":"Unauthorized. Auth key is missing"}

500 {"error":"An error occurred."}

5.3.2 Persistent Identification and Long-term preservation services

The purpose of persistent identification services is to create digital assets by assigning a persistent
unique identifier to the dataset submission. In order to change existing data assets, it is required to

D5.1 Data Technology Specification and Development Roadmap

Page 38 of 62

either fork it, in case the intention is to create a new derivative (added value/content change), or to
check it out if the data asset should be submitted as a new version under the same persistent
identifier.

Change operation must therefore always operate on a dataset submission process (using the
corresponding process_id).

5.3.2.1 Register dataset submission

A dataset submission is registered by invoking the PID-Service which assigns a persistent unique
identifier (PID). After registration of the dataset submission, it is a data asset. The PID resolves to a
URL where the metadata view of the data asset can be retrieved.

5.3.2.1.1 Registration request

Request

Method URL

POST api/v1.0/dataassets/

Parameters/Request Body

Type Params

HEAD auth_key

auth_key
The auth_key that was given in response to /api/login
process_id
The process_id Process ID of the dataset submission process.

Request body
{
 "process_id": "4c65f1f5-9c10-4d90-952e-959c8b16d0a7"
}

Response

Status Response

202 An example response is:

{
 "message": "Registration request sent successfully.",
 "job_id": "9c71f1f5-9c15-4d90-952e-959c8b16d0a7"
}

Result can be obtained by job status request (using job_id):
After checkout the new PID (pid) can be obtained.

{

 "success": true,
 "message": "Data asset status assigned successfully.",

D5.1 Data Technology Specification and Development Roadmap

Page 39 of 62

 "pid": " info:ark ait/168bc315a2ee09042d83d7c5811b533620531f67"
}

400 {"error":"Process ID (process_id) is missing."}

401 {"error":"Unauthorized. Auth key is missing"}

403 {"error":"Forbidden. The current user does not have access
 to perform the requested action"}

500 {"error":"An error occurred during registration."}

5.3.2.1.2 Fork a data asset

Forking a registered dataset means that a copy of the existing data asset will be created to start a
new dataset submission process. The provenance relation to the original data asset will be
recorded. A new identifier can be assigned to create a derivative data asset.

Request

Method URL

POST api/v1.0/dataassets/<pid>/fork/

Parameters/Request Body

Type Params

HEAD
GET

auth_key
pid

auth_key
The auth_key that was given in response to /api/login
pid
The pid of the forked data asset.

Response

Status Response

202 An example response is:

{
 "message": "Fork request sent successfully.",
 "job_id": "9c71f1f5-9c15-4d90-952e-959c8b16d0a7"
}

Result can be obtained by job status request (using job_id):
After checkout the new process ID (process_id) can be obtained.

{

 "success": true,
 "message": "Fork finished successfully.",

D5.1 Data Technology Specification and Development Roadmap

Page 40 of 62

 "process_id": "8f71d1d5-1a16-1d00-352e-959c8b16d0a2"
}

400 {"error":"Process ID (process_id) is missing."}

401 {"error":"Unauthorized. Auth key is missing"}

403 {"error":"Forbidden. The current user does not have access
 to perform the requested action"}

500 {"error":"An error occurred during registration."}

5.3.2.1.3 Edit a data asset

Editing a registered dataset means that a copy of the existing data asset will be created to start
operating on a copy of the data asset. A new version of the data asset will be created. However, the
difference compared to forking the dataset, no new identifier will be assigned. The modified
dataset has the same external identifier which resolves to a new version.

Request

Method URL

POST api/v1.0/dataassets/<pid>/edit/

Parameters/Request Body

Type Params

HEAD
GET

auth_key
pid

auth_key
The auth_key that was given in response to /api/login
pid
The pid of the data asset to be edited.

Response

Status Response

202 An example response is:

{
 "message": "Checkout request sent successfully.",
 "job_id": "9c71f1f5-9c15-4d90-952e-959c8b16d0a7"
}

Result can be obtained by job status request (using job_id):
After checkout the new process ID (process_id) can be obtained.

{

D5.1 Data Technology Specification and Development Roadmap

Page 41 of 62

 "success": true,
 "message": "Checkout finished successfully.",
 "process_id": "8f71d1d5-1a16-1d00-352e-959c8b16d0a2"
}

400 {"error":"Process ID (process_id) is missing."}

401 {"error":"Unauthorized. Auth key is missing"}

403 {"error":"Forbidden. The current user does not have access
 to perform the requested action"}

500 {"error":"An error occurred during registration."}

5.3.2.1.4 Revoke data asset

If a data asset is obsolete and should be removed, this service allows revoking it from the DMA
shared space. Note that this will not delete the data asset, but it will “mark it as deleted” in the
federated blockchain database and authorization and access services will block use of the data
asset.

Request

Method URL

DELETE api/v1.0/dataassets/<pid>/

Parameters/Request Body

Type Params

HEAD
GET

auth_key
pid

auth_key
The auth_key that was given in response to /api/login
pid
The pid of the data asset which is to be revoked.

Response

Status Response

202 An example response is:

{
 "message": "Revocation request sent successfully.",
 "job_id": "9c71f1f5-9c15-4d90-952e-959c8b16d0a7"
}

Result can be obtained by job status request (using job_id):

D5.1 Data Technology Specification and Development Roadmap

Page 42 of 62

{
 "success": true,
 "message": "Data asset revoked."
}

400 {"error":"Process ID (process_id) is missing."}

401 {"error":"Unauthorized. Auth key is missing"}

403 {"error":"Forbidden. The current user does not have access
 to perform the requested action"}

500 {"error":"An error occurred during registration."}

5.3.2.2 Preservation

The default ingest pipeline allows executing a predefined ingest workflow that operates on a working
directory where datasets including the required metadata is available.

5.3.2.2.1 Apply migration policy

Application of a migration policy. A policy is of a set of policy definitions which consists of the
format identifiers which can trigger a migration action. The action must be implemented and
registered with the given name. Optionally, one or several conditions can be implemented as part
of the migration action and referenced in the policy.

Request

Method URL

PATCH api/v1.0/dataassets/<process_id>/migrate

Parameters/Request Body

Type Params

HEAD auth_key

GET process_id

auth_key
The auth_key that was given in response to /api/login
process_id
The process_id Process ID of the dataset submission process.

{

 "policy": [
 {

D5.1 Data Technology Specification and Development Roadmap

Page 43 of 62

 "name": "pdfa",

 "formats": ['fmt/14', 'fmt/15', 'fmt/16'],

 "action": "ghostscriptpdfamigrate",

 "conditions": [
 "none"
]

 },

 {

 "name": "giftotiff",

 "formats": ['fmt/3', 'fmt/4'],

 "action": "imagemagickgifmigrate",

 "conditions": [
 "none"
]

 }

]

}

Response

Status Response

202 An example response is:

{
 "message": "Migration policy application request
 submitted successfully.",
 "job_id": "9c71f1f5-9c15-4d90-952e-959c8b16d0a7"

}

Result can be obtained by job status request (using job_id):

{
 "success": true,
 "message": "Migration policy applied successfully."
}

400 {"error":"Process ID does not exist."}

401 {"error":"Unauthorized. Auth key is missing"}

404 {"error":"No asset with the given PID (pid) found."}

415 {"error":"Unsupported Media Type (JSON request body

D5.1 Data Technology Specification and Development Roadmap

Page 44 of 62

 required)."}

500 {"error":"An error occurred."}

5.3.3 Blockchain services for security and provenance

5.3.3.1 Create an Entity

Create a Blockchain entity which can either by type “organization” or type “agent”.

Request

Method URL

POST api/v1.0/blockchain_entity/

Parameters/Request Body

Type Params

HEAD auth_key

Request body
{
 "entity_type": "agent"
}

auth_key
The auth_key that was given in response to /api/login
entity_type
The type of entity to create. Valid types are “organization” or “agent”

Response

Status Response

202 An example response is:

{
 "entity_id": "0x168bc315a2ee09042d83d7c5811b533620531f67"
}

400 {"error":"Missing or invalid request parameters."}

415 {"error":"Unsupported Media Type (JSON request body
 required)."}

401 {"error":"Unauthorized. Auth key is missing"}

500 {"error":"An error occurred."}

D5.1 Data Technology Specification and Development Roadmap

Page 45 of 62

5.3.3.2 Create a Contract

Create a Blockchain Smart Contract associated with either a “dataset”, or “service”.

Request

Method URL

POST api/v1.0/blockchain_contract/

Parameters/Request Body

Type Params

HEAD auth_key

Request body
{
 "entity_type": "dataset",
 “tou_contract_id": “0x225178b4829bbe7c9f8a6d2e3d9d87b66ed57d4f”
 "entity_hash":
 "0x60635f91977076abd6ed80e38908c962c028616b7d36ce4598e4f78a719af677"
}

auth_key
The auth_key that was given in response to /api/login
entity_type
The type of entity to create. Valid types are “dataset” or “service”
tou_contract_id
The Blockchain ID of the Smart Contract that defines the Terms of Use for the entity
entity_hash
{optional} This is a unique hash value associated with the entity that can be registered in
the Blockchain (recommended: SHA256)

Response

Status Response

202 An example response is:

{
 "contract_id": "0x168bc315a2ee09042d83d7c5811b533620531f67"
}

400 {"error":"Missing or invalid request parameters."}

415 {"error":"Unsupported Media Type (JSON request body
 required)."}

401 {"error":"Unauthorized. Auth key is missing"}

500 {"error":"An error occurred."}

D5.1 Data Technology Specification and Development Roadmap

Page 46 of 62

5.3.3.3 Execute a Transaction

Execute a transaction by defining the transaction type, source and recipient of the transaction.

Request

Method URL

POST api/v1.0/blockchain_transaction/

Parameters/Request Body

Type Params

HEAD auth_key

Request body
{
 "contract_id": "0x168bc315a2ee09042d83d7c5811b533620531f67",
 "transaction_function": "transfer_ownership",
 "transaction_parameters": {
 “param_1” : “value_1”,
 ...

 }

}

auth_key
The auth_key that was given in response to /api/login
contract_id
The Blockchain address of the contract in question
transaction_function
The type of transaction to execute (that is, the function to call).
transaction_paramters
A list of key-value pairs that are parameters of the desired function call.

Response

Status Response

202 An example response is:

{
 "message": "Message from underlying transaction."
}

400 {"error":"Missing or invalid request parameters."}

415 {"error":"Unsupported Media Type (JSON request body
required)."}

D5.1 Data Technology Specification and Development Roadmap

Page 47 of 62

401 {"error":"Unauthorized. Auth key is missing"}

402 {"error":"Undefined function specified"}

403 {"error":"Parameter mismatch with specified function"}

500 {"error":"An error occurred."}

5.3.4 Data quality enhancement services

5.3.4.1 Header Completeness

Via the unique external identifier, a submitted dataset is assessed regarding its completeness of all
existing metadata fields.

Request

Method URL

POST api/v1.0/quality/dq1/<process_id>/

Parameters/Request Body

Type Params

HEAD
GET

auth_key
process_id

auth_key
The auth_key that was given in response to /api/login
process_id
The process_id Process ID of the dataset submission process.

Response

Status Response

202 An example response is:

{
 "metadata completeness": 80,

 "description": "completeness score in %"
}

400 {"error":"Process ID does not exist / is missing."}

401 {"error":"Unauthorized. Auth key is missing"}

404 {"error":"No asset with the given PID (pid) found."}

500 {"error":"An error occurred during registration."}

D5.1 Data Technology Specification and Development Roadmap

Page 48 of 62

5.3.4.2 Understandability

Via the unique external identifier, a submitted dataset is assessed regarding its complexity based
on the provided description field in its metadata.

Request

Method URL

POST api/v1.0/quality/dq2/<process_id>/

Parameters/Request Body

Type Params

HEAD
GET

auth_key
process_id

auth_key
The auth_key that was given in response to /api/login
process_id
The process_id Process ID of the dataset submission process.

Response

Status Response

202 An example response is:

{
 "understandability score": 26,

 "description": "Easy"
}

400 {"error":"Process ID does not exist / is missing."}

401 {"error":"Unauthorized. Auth key is missing"}

404 {"error":"No asset with the given PID (pid) found."}

500 {"error":"An error occurred during registration."}

5.3.4.3 Contactability

Via the unique external identifier, a submitted dataset is assessed regarding its completeness in
terms of provided contact information.

Request

Method URL

POST api/v1.0/quality/dq3/<process_id>/

D5.1 Data Technology Specification and Development Roadmap

Page 49 of 62

Parameters/Request Body

Type Params

HEAD
GET

auth_key
process_id

auth_key
The auth_key that was given in response to /api/login
process_id
The process_id Process ID of the dataset submission process.

Response

Status Response

202 An example response is:

{
 "contactability": 0,

 "description": "contact information not available"
}

400 {"error":"Process ID does not exist / is missing."}

401 {"error":"Unauthorized. Auth key is missing"}

404 {"error":"No asset with the given PID (pid) found."}

500 {"error":"An error occurred during registration."}

5.3.4.4 Temporal cohesion

Via the unique external identifier, a submitted dataset is assessed regarding its logical soundness
in terms of the relationship between its creation data and the time period the datasets covers.

Request

Method URL

POST api/v1.0/quality/dq4/<process_id>/

Parameters/Request Body

Type Params

HEAD
GET

auth_key
process_id

auth_key
The auth_key that was given in response to /api/login

D5.1 Data Technology Specification and Development Roadmap

Page 50 of 62

process_id
The process_id Process ID of the dataset submission process.

Response

Status Response

202 An example response is:

{
 "temporal cohesion": 0,

 "description": "creation date of dataset before last datum

 of dataset"
}

400 {"error":"Process ID does not exist / is missing."}

401 {"error":"Unauthorized. Auth key is missing"}

404 {"error":"No asset with the given PID (pid) found."}

500 {"error":"An error occurred during registration."}

5.3.4.5 Openness

Via the unique external identifier, a submitted dataset is assessed regarding its openness of the
attached license.

Request

Method URL

POST api/v1.0/quality/dq5/<process_id>/

Parameters/Request Body

Type Params

HEAD
GET

auth_key
process_id

auth_key
The auth_key that was given in response to /api/login
process_id
The process_id Process ID of the dataset submission process.

Response

Status Response

202 An example response is:

D5.1 Data Technology Specification and Development Roadmap

Page 51 of 62

{
 "openness score": 5,

 "description": "5-star rating due to CC-Zero license"
}

400 {"error":"Process ID does not exist / is missing."}

401 {"error":"Unauthorized. Auth key is missing"}

404 {"error":"No asset with the given PID (pid) found."}

500 {"error":"An error occurred during registration."}

5.3.4.6 Language match

Via the unique external identifier, a submitted dataset is assessed regarding the language stated in
its metadata and the actual language within the dataset.

Request

Method URL

POST api/v1.0/quality/dq6/<process_id>/

Parameters/Request Body

Type Params

HEAD
GET

auth_key
process_id

auth_key
The auth_key that was given in response to /api/login
process_id
The process_id Process ID of the dataset submission process.

Response

Status Response

202 An example response is:

{

 "language match": 1,

 "description": "metadata field matches language of dataset

}

400 {"error":"Process ID does not exist / is missing."}

D5.1 Data Technology Specification and Development Roadmap

Page 52 of 62

401 {"error":"Unauthorized. Auth key is missing"}

404 {"error":"No asset with the given PID (pid) found."}

500 {"error":"An error occurred during registration."}

5.3.4.7 Currentness

Via the unique external identifier, a submitted dataset is assessed regarding its currentness
(freshness) based on the relation of the current data, its release data, as well as the planned
update cycle.

Request

Method URL

POST api/v1.0/quality/dq7/<process_id>/

Parameters/Request Body

Type Params

HEAD
GET

auth_key
process_id

auth_key
The auth_key that was given in response to /api/login
process_id
The process_id Process ID of the dataset submission process.

Response

Status Response

202 An example response is:

{

 "currentness": 1.15,

 "update frequency lambda": 1.15,

 "processing time delta": 1.0

}

400 {"error":"Process ID does not exist / is missing."}

401 {"error":"Unauthorized. Auth key is missing"}

404 {"error":"No asset with the given PID (pid) found."}

500 {"error":"An error occurred during registration."}

D5.1 Data Technology Specification and Development Roadmap

Page 53 of 62

5.3.4.8 Format compliance

Via the unique external identifier, a submitted dataset is assessed regarding its actual format and
the format stated in its metadata.

Request

Method URL

POST api/v1.0/quality/dq8/<process_id>/

Parameters/Request Body

Type Params

HEAD
GET

auth_key
process_id

auth_key
The auth_key that was given in response to /api/login
process_id
The process_id Process ID of the dataset submission process.

Response

Status Response

202 An example response is:

{

 "format compliance": 0,

 "description": "metadata field does not match dataset
 format"

}

400 {"error":"Process ID does not exist / is missing."}

401 {"error":"Unauthorized. Auth key is missing"}

404 {"error":"No asset with the given PID (pid) found."}

500 {"error":"An error occurred during registration."}

5.3.5 Generic services

5.3.5.1 Job status

The function for polling the job status is applicable for asynchronous requests which accept a job
and queue it for execution. The asynchronous requests function returns a job_id parameter which
can be used to query the status of the job execution.

D5.1 Data Technology Specification and Development Roadmap

Page 54 of 62

Request

Method URL

GET api/v1.0/jobs/<job_id>/status

Parameters/Request Body

Type Params

HEAD
GET

auth_key
job_id

auth_key
The auth_key that was given in response to /api/login
job_id
The job_id that was received in response to a job submission

Response

Status Response

202 {

 "status": "finished"
 "message": "Job finished successfully."
}

400 {"error":"Job ID (job_id) parameter is missing."}

401 {"error":"Unauthorized. Auth key is missing"}

404 {"error":"No job with the given job ID (job_id) found."}

500 {"error":"An error occurred."}

5.3.5.2 Cancel job

Cancel a job that was accepted for execution and which is in status “running”. If the job is finished
already, it will return status “finished”. Only if a job that was queued for execution was removed
from the queue or if a running job was stopped, then the status “cancelled” is returned.

Request

Method URL

DELETE api/v1.0/jobs/<job_id>

Parameters/Request Body

Type Params

D5.1 Data Technology Specification and Development Roadmap

Page 55 of 62

HEAD
GET

auth_key
job_id

auth_key
The auth_key that was given in response to /api/login
job_id
The job_id that was received in response to a job submission

Response

Status Response

202 Job cancelled:

{
 "status": "cancelled",
 "message": "Job cancelled."
}

Job finished already:

{
 "status": "finished",
 "message": "Job finished."
}

400 {"error":"Job ID (job_id) parameter is missing."}

401 {"error":"Unauthorized. Auth key is missing"}

404 {"error":"No job with the given job ID (job_id) found."}

500 {"error":"An error occurred."}

5.3.5.3 Access

WP5 is planning to build on the ResourceSync Framework Specification1 for exposing metadata of
available datasets of a node. In a similar way as OAI-PMH2 this protocol allows exposing metadata
to external parties.

The advantage of ResourceSync Framework compared to OAI-PMH is that it the enables sharing of
both metadata and content with aggregators and search engines, i.e. it provides the means for
synchronizing binary resources if needed. A corresponding python client and library
implementation of ResourceSync is available on Github.3

1 http://www.openarchives.org/rs/1.1/resourcesync
2 https://www.openarchives.org/OAI/openarchivesprotocol.html
3 https://github.com/resync/resync

D5.1 Data Technology Specification and Development Roadmap

Page 56 of 62

5.3.5.3.1 List available resources of a DMA node

Returns a Resource List1 as a snapshot of the DMA node's resources at a particular point in time.
The invocation of “api/v1.0/dataassets” shown in the request below corresponds to the
preferred method of exposing available resources which is described in section “6.3.4 robots.txt”2:
to publish a sitemap.xml of available resources.

Request

Method URL

GET api/v1.0/dataassets

Parameters/Request Body

Type Params

HEAD auth_key

auth_key
The auth_key that was given in response to /api/login

Response

Status Response

200 Resource List

<?xml version="1.0" encoding="UTF-8"?>
<sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"
 xmlns:rs="http://www.openarchives.org/rs/terms/">
 <rs:ln rel="up"
 href="http://example.com/dataset1/capabilitylist.xml"/>
 <rs:md capability="resourcelist"
 at="2013-01-03T09:00:00Z"
 completed="2013-01-03T09:10:00Z"/>
 <sitemap>
 <loc>http://example.com/resourcelist1.xml</loc>
 <rs:md at="2013-01-03T09:00:00Z"/>
 </sitemap>
 <sitemap>
 <loc>http://example.com/resourcelist2.xml</loc>
 <rs:md at="2013-01-03T09:03:00Z"/>
 </sitemap>
 <sitemap>
 <loc>http://example.com/resourcelist3.xml</loc>
 <rs:md at="2013-01-03T09:07:00Z"/>
 </sitemap>
</sitemapindex>

1 http://www.openarchives.org/rs/1.1/resourcesync#ResourceList
2 http://www.openarchives.org/rs/1.1/resourcesync#robots

D5.1 Data Technology Specification and Development Roadmap

Page 57 of 62

Content of the Resource List identified by the URI
http://example.com/resourcelist1.xml

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"
 xmlns:rs="http://www.openarchives.org/rs/terms/">
 <rs:ln rel="up"
 href="http://example.com/dataset1/capabilitylist.xml"/>
 <rs:ln rel="index"
 href="http://example.com/dataset1/resourcelist-index.xml"/>
 <rs:md capability="resourcelist" at="2013-01-03T09:00:00Z"/>
 <url>
 <loc>http://example.com/api/v1.0/dataassets/pid1</loc>
 <rs:md hash="md5:1584abdf8ebdc9802ac0c6a7402c8753"
 length="4385" type="text/turtle"/>
 </url>
 <url>
 <loc>http://example.com/api/v1.0/dataassets/pid2</loc>
 <rs:md hash="md5:4556abdf8ebdc9802ac0c6a7402c9881"
 length="883" type="text/turtle"/>
 </url>
</urlset>

401 {"error":"Unauthorized. Auth key is missing"}

403 {"error":"Forbidden. The current user does not have access to
perform the requested action"}

500 {"error":"An error occurred."}

5.3.5.3.2 Get metadata record of a data asset

Returns the Metadata record of a registered data asset.

Request

Method URL

GET api/v1.0/dataassets/<pid>

Parameters/Request Body

Type Params

HEAD
GET

auth_key
pid

auth_key
The auth_key that was given in response to /api/login
pid
The pid of the data asset.

D5.1 Data Technology Specification and Development Roadmap

Page 58 of 62

Response

Status Response

200 :catalog
 a dcat:Catalog ;
 dct:title "Imaginary Catalog" ;
 rdfs:label "Imaginary Catalog" ;
 foaf:homepage <http://example.org/catalog> ;
 dct:publisher :transparency-office ;
 dct:language <http://id.loc.gov/vocabulary/iso639-1/en> ;
 dcat:dataset :dataset-001 , :dataset-002 , \
 :dataset-003 ;
 .
:dataset-001
 a dcat:Dataset ;
 dct:title "Imaginary dataset" ;
 dcat:keyword "accountability","transparency", \
 "payments" ;
 dct:issued "2011-12-05"^^xsd:date ;
 dct:modified "2011-12-05"^^xsd:date ;
 dcat:contactPoint <http://example.org/transparency-
office/contact> ;
 dct:temporal <http://reference.data.gov.uk/id/quarter/2006-Q1>
;
 dct:spatial <http://www.geonames.org/6695072> ;
 dct:publisher :finance-ministry ;
 dct:language <http://id.loc.gov/vocabulary/iso639-1/en> ;
 dct:accrualPeriodicity <http://purl.org/linked-
data/sdmx/2009/code#freq-W> ;
 dcat:distribution :dataset-001-csv ;
 .
[...]
:dataset-001-csv
 a dcat:Distribution ;
 dcat:downloadURL <http://www.example.org/files/001.csv> ;
 dct:title "CSV distr. of imaginary dataset 001" ;
 dcat:mediaType "text/csv" ;
 dcat:byteSize "5120"^^xsd:decimal ;
 .
[...]

400 {"error":"Data asset not found."}

401 {"error":"Unauthorized. Auth key is missing."}

403 {"error":"Forbidden. The current user does not have access to
perform the requested action."}

404 {"error":"No asset found for the given PID (pid)."}

500 {"error":"An error occurred."}

D5.1 Data Technology Specification and Development Roadmap

Page 59 of 62

6 Development and Deployment Roadmap

The development of WP5 components is divided into two main phases “Phase 1: Prototype
Release” and “Phase 2: Final Release” according to the prototype and final release deliverables
D5.3 “Initial Release of Foundational Data Technology Prototypes [M18]” and D5.4 “D5.4: Final
Release of Foundational Data Technology Prototypes [M30]”.

6.1 Phase 1: Prototype Release

Regarding the development progress of the “Prototype Release”, there is a set of tasks and
milestones which all of the components have in common (excluding the “Semantic enrichment”
component which is developed in WP6) :

• “Prototype code development” task: The prototype code is published in the DMA code
repository (Gitlab) and ready to be tested by other developers. There is documentation
(minimum: README file) which allows installing the prototype and doing tests. Appropriate
tests for the prototype is provided.

• “Sandbox demo deployment” task: The prototype code is deployed in the Sandbox demo
environment. This task covers also dependencies on other components.

• “REST Service available” milestone: The REST web service is functioning according to the
REST interface specification given in this document. However, this specification has draft
status and deviations are therefore probable. Updated specifications will be part of the
component documentation.

• “Finalizing demo” task: This task includes deployment/integration/data preparation
activities which are required to prepare a demonstration in the sandbox environment.

Table 6 shows the development and deployment roadmap for WP5 components. Cells with blue
background highlight component development, integration, or deployment tasks with their
corresponding runtime in months, and the cells with red background denote milestones which
must be completed at the beginning of the corresponding month.

Asset
2017 2018
Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Prototype release
- Conduit Data Ingest

- Prototype code development
- Sandbox demo deployment
- REST Service available

- PID Service & Preservation
- Prototype code development
- Sandbox demo deployment
- REST Service available
- Conduit integration

- Data Management GUI
- Prototype code development
- Sandbox demo deployment
- REST Service available
- Conduit integration
- Finalizing demo

- Blockchain Sec. & Prov.

D5.1 Data Technology Specification and Development Roadmap

Page 60 of 62

- Prototype code development
- Sandbox demo deployment
- Conduit integration
- REST Service available
- Finalizing demo

- Data Quality Services
- Prototype code development
- Sandbox demo deployment
- Conduit integration
- REST Service available
- Finalizing demo

- Semantic Enrichment
- Conduit integration
- REST Service available
- Finalizing demo

- Demo of prototype ready

Table 6 Development and deployment roadmap for the prototype release WP5 components

6.2 Phase 2: Final Release

The goal of the final release is to create software components which are adequate for “production
deployment” (deployment in an environment which is close to the targeted DMA marketplace
production environment). Regarding the development progress of the “Final Release”, there are
tasks and milestones which all of the components have in common (excluding the “Semantic
enrichment” component which is developed in WP6) :

• “Final release code improvement” task: The prototype code is improved in order to reach a
maturity level for production deployment. Instructions how to deploy the component in
the production environment are provided.

• “Initial production deployment” task: The first deployment an environment which is close
to the targeted DMA marketplace production environment. This task covers also
dependencies on other components.

• “Conduit integration” milestone: Component and service adaptations which are required
to integrate components with the Conduit data set ingest processing pipeline.

• “Production deployment” task: The final deployment an environment which is close to the
targeted DMA marketplace production environment. This task covers also dependencies
on other components.

Table 6 shows the development and deployment roadmap for WP5 components

Asset
2018 2019
Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Final release
- Conduit Data Ingest

- Final release code improvem.
- Initial production deployment

- PID Service & Preservation
- Final release code improvem.
- Initial production deployment
- Conduit integration

D5.1 Data Technology Specification and Development Roadmap

Page 61 of 62

- Data Management GUI
- Final release code improvem.
- Initial production deployment
- Conduit integration
- Production deployment

- Blockchain Sec. & Prov.
- Final release code improvem.
- Initial production deployment
- Conduit integration
- Production deployment

- Data Quality Services
- Final release code improvem.
- Initial production deployment
- Conduit integration
- Production deployment

- Semantic Enrichment
- Conduit integration
- Production deployment
- Enhanced blockchain security

- Production deployment ready
- Final release

Table 7 Development and deployment roadmap for the final release WP5 components

7 Conclusion

This document presented the DMA Data Technology Specification and Development Roadmap
regarding the ongoing work in WP5 of the DMA project. The purpose of this document was to show
that basic technologies and frameworks have been selected and that the necessary technical
specifications are in place to support the development, integration, and deployment process.

It must be noted that the technical specification is in draft status. The specifications will be
continuously adapted according to new requirements coming up, especially during the integration
and deployment phases.

8 Appendices

8.1 Appendix A: HTTP Status Codes

All status codes are standard HTTP status codes. The below ones are used in this API.

2XX - Success
4XX - Error occurred in client’s part
5XX - Error occurred in server’s part

Status Code Description

D5.1 Data Technology Specification and Development Roadmap

Page 62 of 62

200 OK

201 Created

202 Accepted (Request accepted, and queued for execution)

400 Bad request/Not found

401 Authentication failure

403 Forbidden

404 Resource not found

405 Method Not Allowed

409 Conflict

412 Precondition Failed

413 Request Entity Too Large

500 Internal Server Error

501 Not Implemented

503 Service Unavailable

	1 Introduction
	2 Required Capabilities
	2.1 Storing and processing within the cloud
	2.2 Blockchain Technology
	2.3 Data set ingest
	2.4 Standards for long-term-preservation
	2.5 Security

	3 Framework Technologies Overview
	3.1 Persistence/Storage
	3.2 Cloud Technology
	3.3 Cluster/Parallelization
	3.4 Streaming Data
	3.5 Blockchain

	4 Components
	4.1 Conduit Dataset Ingest & Preservation
	4.1.1 Web user interface
	4.1.2 Validation
	4.1.3 Semi-automatic metadata extraction and generation
	4.1.4 Persistent storage

	4.2 Long-term preservation and data citation components
	4.2.1 Long-term preservation
	4.2.2 Persistent unique identifier (PID)

	4.3 Data Management GUI
	4.4 Blockchain components for security and provenance
	4.4.1 Deployment
	4.4.2 Decentralized registry
	4.4.3 Provenance storage
	4.4.4 Data set authenticity

	4.5 Data quality enhancement
	4.5.1 Data quality assessment
	4.5.2 Data quality improvement
	4.5.2.1 CSV validation & correction

	5 Services
	5.1 Context
	5.2 Data Set Ingest Pipeline
	5.3 Service Interface Specifications (REST)
	5.3.1 Data set ingest services
	5.3.1.1 Default ingest pipeline
	5.3.1.1.1 Initialize new dataset submission process
	5.3.1.1.2 Perform dataset ingest

	5.3.2 Persistent Identification and Long-term preservation services
	5.3.2.1 Register dataset submission
	5.3.2.1.1 Registration request
	5.3.2.1.2 Fork a data asset
	5.3.2.1.3 Edit a data asset
	5.3.2.1.4 Revoke data asset

	5.3.2.2 Preservation
	5.3.2.2.1 Apply migration policy

	5.3.3 Blockchain services for security and provenance
	5.3.3.1 Create an Entity
	5.3.3.2 Create a Contract
	5.3.3.3 Execute a Transaction

	5.3.4 Data quality enhancement services
	5.3.4.1 Header Completeness
	5.3.4.2 Understandability
	5.3.4.3 Contactability
	5.3.4.4 Temporal cohesion
	5.3.4.5 Openness
	5.3.4.6 Language match
	5.3.4.7 Currentness
	5.3.4.8 Format compliance

	5.3.5 Generic services
	5.3.5.1 Job status
	5.3.5.2 Cancel job
	5.3.5.3 Access
	5.3.5.3.1 List available resources of a DMA node
	5.3.5.3.2 Get metadata record of a data asset

	6 Development and Deployment Roadmap
	6.1 Phase 1: Prototype Release
	6.2 Phase 2: Final Release

	7 Conclusion
	8 Appendices
	8.1 Appendix A: HTTP Status Codes

