

www.datamarket.at

DMA Blockchain Design

Deliverable number D5.2

Dissemination level Public

Delivery date 30 June 2017

Status Final (Version 1.0)

Author(s) Ross King, Sven Schlarb

The Data Market Austria Project has received
funding from the programme “ICT of the
Future” of the Austrian Research Promotion
Agency (FFG) and the Austrian Ministry for
Transport, Innovation and Technology
(Project 855404)

D5.2 DMA Blockchain Design

Page 2 of 20

Executive Summary

This Deliverable defines the architecture and design of the DMA Blockchain component in the
context of the DMA technology foundation, based on the DMA proposal, the Community-driven
“Data-Services Ecosystem Requirements (1st version)” (D2.2), and the “Data Technology
Specification and Development Roadmap” (D5.1).

In the first section, we justify our selection of Ethereum as the basis for a private blockchain within
the DMA ecosystem, and review some of the basic Ethereum concepts (Externally Owned
Addresses, Ether/Gas, and Contracts).

In the second section, we identify specific components within the DMA technical foundation that
must exist and interact with the Blockchain component.

In the next section, we review the DMA Blockchain data model and its relationship to the more
general metadata models for Users, Data Assets, and Services. We also present an overview of the
DMA Blockchain architecture.

In the fourth section, we present class definitions (describing attributes and methods) for the so-
called “State Contracts” - Membership, Data Asset, and Service Contracts - that provide a guide for
the implementation of said contracts using Solidity or another language supported by the
Ethereum Virtual Machine.

In the final section, we define how the Blockchain layer (the combination of the Blockchain API
defined in D5.1 and the Blockchain component defined in this deliverable) interacts with other
DMA components in order to implement selected DMA use cases.

D5.2 DMA Blockchain Design

Page 3 of 20

Table of Contents

1 Introduction ... 5

2 Blockchain Technology .. 5
2.1 Private Ethereum Network ... 5
2.2 Ethereum Basics ... 6

2.2.1 Ethereum EOAs ... 6
2.2.2 Ethereum Contracts.. 6
2.2.3 Ethereum Ether (or Gas) ... 7

3 Blockchain Architecture .. 8
3.1 Ethereum Addresses .. 8
3.2 Membership Management .. 9
3.3 Identity Management .. 9
3.4 Secret Management .. 10
3.5 Smart Contracts .. 10

4 Data Model ... 11
4.1 DMA Entities ... 11
4.2 Relation to DMA Metadata .. 12
4.3 Architecture Overview ... 13

5 State Contracts ... 14
5.1 Data Asset Contract ... 14
5.2 Service Contract ... 16
5.3 Membership Contract .. 17

6 Use Cases ... 18
6.1 User Creation .. 18
6.2 User Login .. 19
6.3 Create Data Asset .. 19
6.4 Version Data Asset ... 19
6.5 Fork Data Asset ... 20
6.6 Download Data Asset ... 20
6.7 Create Service .. 20

D5.2 DMA Blockchain Design

Page 4 of 20

List of Abbreviations

API Application Programming Interface

DMA Data Market Austria

ECDSA Elliptic Curve Digital Signature Algorithm - the algorithm employed by Ethereum to
generate a public key associated with a given private key

EOA Externally Owned Account - Addresses (which are also Ether accounts) linked to an
agent (organization or user) in an Ethereum Blockchain

EVM Ethereum Virtual Machine - a software interpreter that runs on each Ethereum node,
executing the code defined in Ethereum Contracts.

GPL Gnu Public License - a type of open source software license that requires any
derivatives of the code to also be published under a GPL licence

Oauth The OAuth 2.0 “open authentication” authorization framework

PID Persistent Identifier

SLA Service Level Agreement

UTXO In Bitcoin, an Unspent Transaction Output

D5.2 DMA Blockchain Design

Page 5 of 20

1 Introduction

In any scientific endeavor, the question of the provenance of research data should be foremost in
the researcher’s priorities. What is the source of the data? How has the data been altered over
time? In Big Data terminology, this priority addresses the veracity of data. Not only is the question
central to the rigorousness of scientific results, it is also becoming a central pillar of data
protection regulations: even if personal data is public, it can only be used if its provenance is
documented and understood.

From the point of view of archiving and long-term preservation, the integrity and authenticity of
the data are also paramount, not only from the point of view of changes introduced intentionally
over time, but also due to degradation of the storage media (“bit-rot”) that can alter the meaning
or readability of the Data Asset.

Regarding non-technical aspects of a data ecosystem, business models that rely on centralized
infrastructures and administrations have inherent single-points of failure that endanger long-term
sustainability of such endeavors.

As a result, a primary research goal of the DMA proposal was to investigate the application of
Blockchain technologies to the questions of decentralized curation, preservation, provenance and
security of Data Assets. Or in other words, how can Blockchain technology contribute to the
veracity, integrity, and sustainability of a data and service ecosystem?

In this Deliverable, we define the architecture and design of the DMA Blockchain Security &
Provenance component (or more succinctly, the DMA Blockchain component) in the context of
the DMA technology foundation, based on the DMA proposal, the Community-driven “Data-
Services Ecosystem Requirements (1st version)” (D2.2), and the “Data Technology Specification
and Development Roadmap” (D5.1).

2 Blockchain Technology

2.1 Private Ethereum Network

In DMA Deliverable 5.1, we defined four principle criteria for the evaluation of Blockchain
technologies:

1. Licence Type
2. Maturity
3. Community Support
4. Smart Contract Support

Based on these criteria, we have decided to base the DMA Blockchain implementation on the
Ethereum1 project. In terms of maturity, Ethereum is the second-oldest publicly deployed
Blockchain technology, behind Bitcoin, and has a very large development community supporting
it. Ethereum also provides much richer Smart Contract support than Bitcoin, and indeed was
developed specifically with Smart Contracts in mind. Ethereum is available under the open source
GPLv32 license, which means it cannot be bundled with other license types, either proprietary or

1 https://www.ethereum.org/

2 https://www.gnu.org/licenses/gpl-3.0.en.html

https://www.ethereum.org/
https://www.gnu.org/licenses/gpl-3.0.en.html

D5.2 DMA Blockchain Design

Page 6 of 20

open (such as Apache V2 or the MIT license). GPL also requires that any changes to the codebase to
be made available under the GPL license terms; however, we intend to use the Ethereum core “as
is” without modification and to build our application logic on top of this.

The main reason for deploying a private instance of Ethereum, rather than participating in the
global Ethereum network is that we wish to remain de-coupled from the economics of Ether from
real-world currency evaluation. We do not wish to incentivize mining in DMA in this way; DMA
mining should be carried out by those nodes that wish to invoke contracts (i.e. access data sets
and services), rather than by those wishing to achieve monetary gain (through the collection of
Ether). Furthermore, we wish to research the question of decentralized control of private network
membership during the project, which would not be possible in the Ethereum public network.

Throughout the rest of this document, we will refer to the instantiation of the DMA project-specific
private Ethereum network as the DMA Blockchain.

2.2 Ethereum Basics

The Ethereum blockchain can be alternately described as a blockchain with a built-in
programming language, or as a consensus-based globally executed virtual machine. The part of
the protocol that actually handles internal state and computation is referred to as the Ethereum
Virtual Machine (EVM). The EVM is the engine in which transaction code gets executed, and is the
core differentiating feature between Ethereum and other systems. From a practical standpoint, the
EVM can be thought of as a large decentralized computer containing millions of objects (accounts)
which have the ability to maintain an internal database, execute code and talk to each other.

There are two types of accounts:

1. Externally owned accounts (EOAs): these are accounts controlled by a private key, and if
you own the private key associated with an EOA you have the ability to send Ether and
messages from it.

2. Contracts: contracts are accounts that store their own code, and are controlled by code.

2.2.1 Ethereum EOAs
The long-established Blockchain-based virtual currency Bitcoin stores data about users' balances
in a structure based on unspent transaction outputs (UTXOs): the entire state of the system
consists of a set of "unspent outputs." A user's "balance" in the system is thus the total value of the
set of unspent output transactions for which the user has a private key capable of producing a
valid signature. In contrast, Ethereum implements a much simpler approach: the state stores a list
of Externally Owned Accounts (EOAs) where each account has a balance, as well as Ethereum-
specific data (code and internal storage), and a transaction is valid if the sending account has
enough balance to pay for it, in which case the sending account is debited and the receiving
account is credited with the value.

2.2.2 Ethereum Contracts
By default, the Ethereum execution environment is static; nothing happens and the state of every
account remains the same. However, any user can trigger an action by initiating a transaction from
an EOA, thus triggering a chain of transactions. If the destination of the transaction is another EOA,
then the transaction may transfer some Ether but otherwise does nothing. However, if the
destination is a contract, then the contract in turn activates, and automatically runs its code.

Ethereum provides an internal Turing-complete scripting language for the definition and
development of smart contracts, which one can use to construct any contract or transaction type
that can be formally defined. This code (representing an Ethereum Smart Contract) has the ability

D5.2 DMA Blockchain Design

Page 7 of 20

to read/write to its own internal storage (a database mapping 32-byte keys to 32-byte values), read
the storage of the received message, and send messages to other contracts, triggering their
execution in turn. Once execution stops, and all sub-executions triggered by a message sent by a
contract stop (this all happens in a deterministic and synchronous order, ie. a sub-call completes
fully before the parent call goes any further), the execution environment halts once again, until
woken by the next transaction.

2.2.3 Ethereum Ether (or Gas)
The Ethereum programming language is Turing-complete, and as a result transactions may be
programmed to use bandwidth, storage and computation in arbitrary quantities. The latter in
particular may end up being used in quantities that due to the halting problem cannot be reliably
predicted ahead of time. Preventing denial-of-service attacks via infinite loops is an additional key
objective of the Ether-based transaction model.

In order to address this problem, the Ethereum protocol includes the concept of Ether. Ether is a
virtual currency used by clients in an Ethereum network to pay transaction fees to the machines in
the network that execute the requested operations and contracts. The amount of Ether dedicated
to a specific transaction is referred to as the gas for that transaction. As explained in the Ethereum
design rationale here1:

 “The basic mechanism behind transaction fees is as follows:

• Every transaction must specify a quantity of "gas" that it is willing to consume (called
startgas), and the fee (in Ether) that it is willing to pay per unit gas (gasprice). At the
start of execution, startgas*gasprice Ether are removed from the transaction sender's
account.

• All operations during transaction execution, including database reads and writes,
messages, and every computational step taken by the virtual machine consumes a certain
quantity of gas.

• If a transaction execution processes fully, consuming less gas than its specified limit, say
with gas_rem gas remaining, then the transaction executes normally, and at the end of the
execution the transaction sender receives a refund of gas_rem*gasprice and the miner
of the block receives a reward of (startgas-gas_rem)*gasprice .

• If a transaction "runs out of gas" mid-execution, then all execution reverts, but the
transaction is nevertheless valid, and the only effect of the transaction is to transfer the
entire sum startgas*gasprice to the miner.

• When a contract sends a message to the other contract, it also has the option to set a gas
limit specifically on the sub-execution arising out of that message. If the sub-execution
runs out of gas, then the sub-execution is reverted, but the gas is nevertheless consumed.”

The necessity of gas is a complication associated with the Ethereum implementation, but it is a
necessity given the expressibility of the smart contract language, which is in turn a requirement for
the complex types of contracts envisioned by the DMA project. Our goal is to hide this complexity
from the DMA end user to whatever extent possible.

1 https://github.com/ethereum/wiki/wiki/Design-Rationale

https://github.com/ethereum/wiki/wiki/Design-Rationale

D5.2 DMA Blockchain Design

Page 8 of 20

3 Blockchain Architecture

3.1 Ethereum Addresses

An Ethereum address represents an “externally owned account,” or EOA. For a given EOA, the
address is derived from the public key associated with the private key that controls the account. As
a string, an example account looks like ‘cd2a3d9f938e13cd947ec05abc7fe734df8dd826’. This is a
hexadecimal format (base 16 notation), which is often indicated explicitly by prepending 0x to the
address. Even though users commonly refer to this address as the “public key,” this is actually not
the case. The public key is generated in an intermediate step that the user never sees.

EOAs are generated in three steps:

1. Generate a Private Key

The private key consists of 256 random bits, which can in turn be represented by a string of 64
randomly generated hexadecimal characters. Any algorithm that generates a new private key
should be seeded with a proper random number generator.

2. Calculate the Public Key from the Private Key

Apply the Elliptic Curve Digital Signature Algorithm (ECDSA) to the private key in order to calculate
the public key that is 64 bytes (512 bits) long.

3. Create the Address from the Public key

Apply the Keccak-2561 hash algorithm to the 64-byte public key, which results in a string with 32
bytes. (Note: SHA3-2562 is now an established standard, but Ethereum presently uses the slightly
outdated, less standard Keccak-256 algorithm.)

The final 20 bytes (40 characters) of this (Keccak-256) hash (dropping the first 12 bytes) is the
public address, or the EOA. When prefixed with the hexadecimal indicator “0x” the address
becomes 42 characters long.

Note that a typical Ethereum user never directly generates the private key! The three steps above
are accomplished using Ethereum command line tools (e.g., eth or geth):

$ geth account new
Your new account is locked with a password. Please give a password. Do not
forget this password.
Passphrase:
Repeat Passphrase:
Address: {168bc315a2ee09042d83d7c5811b533620531f67}

This tool automatically creates a random private key in the background, which is then stored on
the local Ethereum node, encrypted by the user’s Passphrase. This fact has implications for the
DMA design, because it means that a user can only authenticate her identity (and thereby access
the private key necessary to initiate transactions) on the Ethereum node where that identity was
established.

Note that the only metadata associated with an EOA is the balance of Ether attributed to that
account. As a result, it is not feasible to represent more complex objects, such as data assets or
services, as simple EOAs in the DMA Blockchain. Instead, these entities must be represented by

1 http://keccak.noekeon.org/

2 https://en.wikipedia.org/wiki/SHA-3

http://keccak.noekeon.org/
https://en.wikipedia.org/wiki/SHA-3

D5.2 DMA Blockchain Design

Page 9 of 20

Contracts. This point is elaborated in the Sections “Smart Contracts” and “State Contracts” below.
Ethereum Contracts are like classes in object-oriented programming: they store attributes (state)
and offer methods (functions).

3.2 Membership Management

In his description of the Stellar consensus protocol1, David Mazières notes that the drawback of
private systems is that the organization or organizations that control the membership (by defining
the “starter list”) effectively have more power within the network than other members. One of the
research questions that DMA should address with respect to the Blockchain is therefore, how can
one manage the membership in a private Blockchain network in a decentralized manner?

Our approach will be to deploy a special contract, the DMA Membership Contract, which maintains
a list of all member organizations (or more specifically, a list of the EOAs of the member
organizations). This contract also implements methods that allow proposing new members
(allowed by any existing member), and also adding new members to the membership list, based on
a majority (or if so desired, unanimous) vote by all existing members. DMA Member organisations
are then empowered to add Actors that act on their behalf (refer to the “DMA Entities” Section
below).

This contract could also maintain some special metadata about member organizations; namely,
the IP addresses of the server nodes that should participate in the DMA Blockchain network. These
nodes could then be synchronized with the Bootstrap Node - a special node in the Blockchain
network that allows peers to find other peers.

3.3 Identity Management

We also require a method by which Actors in the DMA metadata store (Organizations, Employees)
are linked to and represented by Externally Owned Accounts (EOAs) in the DMA Blockchain. We
suggest the address generated when creating an EOA could be used as a unique identifier (PID) in
the DMA Metadata Management component. In other words, these identifiers would have the form:

{member-organization-namespace-string}:{data-asset-id}

For example, with the string “ait” representing the node of the member organization AIT Austrian
Institute of Technology GmbH and “168bc315a2ee09042d83d7c5811b533620531f67” as the
hash string, the PID would be as follows:

ait/168bc315a2ee09042d83d7c5811b533620531f67

Or, as a PID URI:

info:dma/ait/168bc315a2ee09042d83d7c5811b533620531f67

In this manner, the address is a bridge that allows the system to identify any Blockchain agent
based on a PID or find the metadata record of any actor given the Blockchain address. This does
however require that an actor is created and registered simultaneously in the DMA Metadata
Management component and in the DMA Blockchain component; that is, the same application
logic must interact with both of these components in a single process.

1 https://www.stellar.org/papers/stellar-consensus-protocol.pdf

https://www.stellar.org/papers/stellar-consensus-protocol.pdf

D5.2 DMA Blockchain Design

Page 10 of 20

3.4 Secret Management

When a new user is created, this user will presumably also define a password that unlocks the user
account on the DMA application layer. At the same time, a Passphrase must also be generated that
unlocks the private key associated with the EOA.

One possibility would be that the same password unlocks both the user account and the private
key. This would be the simplest approach and could be recommended for the year one
implementation roadmap.

However, it may be both desirable and necessary that DMA entities have multiple private keys or
other credentials, in which case it will be useful to add a secrets management application to the
DMA application stack, such as the OpenStack Barbican1 component.

This will in particular be necessary in for those (non-open) Data Assets that are stored as encrypted
containers in the DMA network. In this case, each Data Asset will require an encryption key, which
can be allocated to a user in the case that the conditions of the License Contract are fulfilled. Such
keys should in turn be managed through a Secret Management component.

Given the necessity of a Secret Management component, it then becomes possible to separate a
user’s DMA access password from the user’s DMA Blockchain passphrase. The passphrase could be
stored in the Secret Management component, unlocked by a token that in turn is authorized by the
user’s password. But this additional complication, if required at all, could be implemented as part
of the year two roadmap.

3.5 Smart Contracts

Data Assets and Services are additional entities that must be modelled in the DMA ecosystem. But
from the point of view of the DMA Blockchains, these are not agents. A Data Asset does not initiate
a transaction in the Blockchain; rather, an agent (User or Organization) initiates a transaction
related to a Data Asset, e.g., access the Data Asset, fork the Data Asset, enrich the Data Asset.
Similarly, agents may stage a Service (apply to make the service available on a chose
computational cluster), access a Service, or apply a Service to a Data Asset. From this point of view
it should be clear that Data Assets and Services cannot be modelled as EOAs, but rather as
Contracts.

As Contracts, these entities can maintain stateful information in the DMA Blockchain, and this
information can be modified over time through Blockchain transactions. As transactions are also
permanently and irrevocably preserved in the Blockchain, this provides a perfect provenance
history for the entities in question.

Furthermore, Ethereum Contracts can invoke other Contracts. This means it is both possible and
desirable to model other contractual entities in particular the License Contracts that govern the
terms of service (SLAs) and terms of use (costs, conditions. etc.)l. By separately modelling the
License Contracts, the same type of model contract2 (e.g., “access this entity by paying money to
this actor”) can be referenced by multiple entities (Data Assets). This approach also creates a clear
separation of interest between DMA infrastructure developers, who would develop the State
Contracts, and DMA legal experts, who would develop the License Contracts in the context of WP3.

1 https://wiki.openstack.org/wiki/Barbican

2 http://solidity.readthedocs.io/en/develop/contracts.html%23inheritance

https://wiki.openstack.org/wiki/Barbican
https://www.google.com/url?q=http://solidity.readthedocs.io/en/develop/contracts.html%23inheritance&sa=D&ust=1496996743765000&usg=AFQjCNGzLWH6kjcXHM0BFvn0EU0SpW7udw

D5.2 DMA Blockchain Design

Page 11 of 20

4 Data Model

4.1 DMA Entities

The hierarchy of DMA entities to be modelled in the context of the DMA Blockchain is illustrated in
Figure 1 on page 12.

Entities have two main classes: Agents and Contracts

Agents are those entities that have agency in the Blockchain, that is, those entities that can initiate
transactions. In the Blockchain world, there are only Agents, and these Agents are represented by
Externally Owned Accounts (EOAs).

In the world of the DMA metadata model, there are two types of Agents: Organizations and Actors.
Organisations are those legal entities that can become members of the DMA Ecosystem, and Actors
are those entities that act on behalf of organisations (e.g., creators, employees, contractors).
Therefore a 1:N relationship between Organisations and Actors should be modeled there; this
relationship will however not be apparent in the DMA Blockchain and Blockchain transactions can
be initiated by either type of Agent.

Contracts represent either those DMA entities whose state (and historical provenance of that
state) should be stored in the DMA Blockchain (the “State” contract type), or the conditions under
which those entities may be accessed (the “License Contract” type). State Contracts represent DMA
Data Assets or DMA Services. Data Assets refer specifically to static data sources, as opposed to
dynamic data sets or streaming data. It is assumed that dynamic and streaming data will be
offered as a service, hence the sub-class “Data Services,” which may or may not be necessary in
terms of implementation, but is useful in order to clarify the difference between static and dynamic
data asset contracts.

A static Data Asset (represented by a Data Asset Contract) has potential features that cannot be
applied to dynamic data assets (as previously addressed in Deliverable D5.1); for example, a static
Data Asset may have an associated hash value (used to verify the integrity of the content), it may
be encrypted (in order to have a higher level of security), and it may be forked (that is, one could
create a new Data Asset that is clearly derived from a pre-existing Data Asset).

D5.2 DMA Blockchain Design

Page 12 of 20

Figure 1: DMA Blockchain Entities

None of these concepts can be applied to dynamic Data Assets, nor indeed to Services in general. A
Service on the other hand may have other attributes, such as the “Developer” (an Actor that is
responsible for the software associated with the Service), whereas Data Assets would have
“Curators” instead.

The State-based Contracts for Data Assets and Services will be developed in the context of DMA
WP5 (Task 5.2).

License Contracts (in German Lizenzverträge) are traditional Smart Contracts that define the
obligations of the Agent that offers a Data Asset or Service and the obligations of the Agent that
wishes to make use of said Data Asset or Service (such as agreement to license terms, payment for
use, etc.). License Contracts should be developed in the context of DMA WP3 (Task 3.3).

4.2 Relation to DMA Metadata

The design of the DMA Blockchain data model requires a synchronization of key attributes with the
DMA metadata storage component. As noted above (“Identity Management”), sharing identifying
entities in both systems through their unique EOA is the backbone of this approach. The concept is
elaborated in Figure 2, which illustrates how these entity IDs are references across metadata
records, agents, and Contracts.

D5.2 DMA Blockchain Design

Page 13 of 20

Figure 2: Relationships between the DMA Metadata Store and the DMA Blockchain

4.3 Architecture Overview

An overview of the architectural concepts described in this section is shown in Figure 3. Note that
this view is a mixture of physical architecture (depicting actual users and server nodes) as well as
logical architecture (depicting Contracts and their relationships). The nexus at the center of the
diagram represents the DMA Blockchain itself, which is of course replicated on all physical nodes.

D5.2 DMA Blockchain Design

Page 14 of 20

Figure 3: Overview of DMA Blockchain Architecture

5 State Contracts

This section is meant to specify the attributes and functionality of the DMA State Contracts
(Membership, Data Asset and Service Contract). As part of Task 5.2, this functionality will be
implemented in one of the Ethereum-supported Smart Contract languages, for example Solidity.

5.1 Data Asset Contract

This section specifies the attributes and functionality of the DMA Data Asset Contract.

Attributes

creator: EOA of the agent that owns the Data Asset

publisher: EOA of the agent that publishes the Data Asset

curator: EOA of the agent that curates the Data Asset

version: the current version of Data Asset

hash: the map of hash values calculated from the datasets included in the
current version of the Data Asset

uri: the unique identifier of the Data Asset

predecessor: the Address of the Data Asset from which this Data Asset was

https://github.com/ethereum/solidity

D5.2 DMA Blockchain Design

Page 15 of 20

forked (empty by default)

license: the Address of the License Contract associated with this Data
Asset

Methods

change_creator (new_creator): changes the creator of the Data Asset to
the agent designated by the EOA new_creator. Can only be invoked by the
present creator of the Data Asset.

Returns: true (if successful) or false (if failed)

change_publisher (new_publisher): changes the publisher of the Data Asset
to the agent designated by the EOA new_publisher. Can only be invoked by
the present creator of the Data Asset.

Returns: true (if successful) or false (if failed)

change_curator (new_curator): changes the curator of the Data Asset to
the agent designated by the EOA new_curator. Can only be invoked by the
present creator or the present publisher of the Data Asset.

Returns: true (if successful) or false (if failed)

update_dataasset (uri): replaces the current Data Asset with the Data
Asset identified by the uri. The attributes uri, version, and hash are
updated. Can only be invoked by the present creator, publisher, or
curator of the Data Asset.

Returns: map of hash values of datasets contained in updated Data Asset

fork_dataasset (uri): creates a new Data Asset Contract with the Data
Asset identified by the uri. The attribute uri is set to uri, the
attribute predecessor is set to the Address of the parent Data Asset. The
attribute version is set to 1.0, and the hash value is calculated based
on the bitstream available at uri. Can only be invoked by the present
creator, publisher, or curator of the Data Asset.

Returns: Address of new Data Asset Contract

download_dataasset(): Can be called by any Agent in the system. Invokes
the license Contract for the Data Asset on behalf of said Agent.

Returns: true if license Contract conditions for download are fulfilled,
false if not.

stage_dataasset(): Can be called by any Agent in the system. Invokes the
license Contract for the Data Asset on behalf of said Agent.

Returns: true if license Contract conditions for staging are fulfilled,
false if not.

D5.2 DMA Blockchain Design

Page 16 of 20

5.2 Service Contract

This section specifies the attributes and functionality of the DMA Service Contract.

Attributes

creator: EOA of the agent that owns the Service

publisher: EOA of the agent that publishes the Service

developer: EOA of the agent that developed the Service

version: the current version of Service

uri: the locator of the Service

license: the Address of the License Contract (or SLA) associated with
this Service

license: the Address of the License Contract associated with this Service

Methods

change_creator (new_creator): changes the creator of the Service to the
agent designated by the EOA new_creator. Can only be invoked by the
present creator of the Service.

Returns: true (if successful) or false (if failed)

change_publisher (new_publisher): changes the publisher of the Service to
the agent designated by the EOA new_publisher. Can only be invoked by the
present creator of the Service.

Returns: true (if successful) or false (if failed)

change_developer (new_developer): changes the Developer of the Service to
the agent designated by the EOA new_developer. Can only be invoked by the
present creator or the present publisher of the Service.

Returns: true (if successful) or false (if failed)

update_service (uri): replaces the current Service with the Service
specified by the uri. The attributes uri and version are updated. Can
only be invoked by the present creator, publisher, or developer of the
Service.

Returns: version of updated Data Asset

D5.2 DMA Blockchain Design

Page 17 of 20

invoke_service (): Can be called by any Agent in the system. Invokes the
license Contract for the Service for invocation on behalf of said Agent.

Returns: true if license Contract conditions for invocation are
fulfilled, false if not.

stage_service (): Can be called by any Agent in the system. Invokes the
license Contract for the Service for staging on behalf of said Agent.

Returns: true if license Contract conditions for staging are fulfilled,
false if not.

invoke_license (): Can be called by any Agent in the system. Invokes the
license Contract for the Service on behalf of said Agent.

Returns: true if license Contract conditions are fulfilled, false if not.

5.3 Membership Contract

This section specifies the attributes and functionality of the DMA Membership Contract.

Attributes

members: array of EOAs of each DMA member organisation

votes: map of

Methods

propose_member (candidate_eoa): Creates a new entry in the votes map
keyed to the candidate_eoa. Can be invoked by any DMA member, but only
once for any given candidate.

Returns: true (if successful) or false (if failed)

vote (candidate_eoa, approve): Registers the value of approve (true or
false) for a given candidate_eoa and the member organization executing
the function in the vote map. Can be invoked by any DMA member, but only
once for any given candidate.

Returns: true (if successful) or false (if failed)

add_member (candidate_eoa): Checks the status of the votes map for a
given candidate_eoa. If a majority of the existing members have voted in
favor of the new candidate, the candidate_eoa is added to the members
array and the vote is removed from the votes map. If a majority of the
existing members have voted against the new candidate, the vote is

D5.2 DMA Blockchain Design

Page 18 of 20

removed from the votes map (and the proposed membership is rejected). If
member votes are still pending, the function returns false but no other
action is taken. Can be invoked by any DMA member.

Returns: true (if successful) or false (if failed)

6 Use Cases

Use cases cannot be implemented through the DMA Blockchain component alone; they must be
executed in coordination between the layers indicated in Figure 4 below:

Figure 4: DMA Application Layers

The User Interface layer represents the (presumably) web-based user interface with which an end
user directly interacts. The Business Logic Layer is the programmatic layer that implements the use
cases and business processes required by the Ecosystem. The Component Interface layer
represents the (presumably) RESTful APIs of the various DMA components, including
Authentication, Secrets, and Metadata Management components, as well as the Blockchain API.

The Blockchain Component itself represents the Ethereum web.js endpoint, which is called by the
Blockchain API and operates directly on the EOAs and Contracts as described in the previous
sections. In the use cases discussed below, the combination of the Blockchain Component and the
Blockchain API will be referred to as the Blockchain layer. Functions in the Blockchain layer
should never be directly invoked by an end user, but only through the Business Logic layer.

The use cases discussed in the following subsections are examples that have been extracted from
the DMA WP4 User Stories1 that are relevant for the DMA Blockchain component. These
descriptions are not intended to be comprehensive, but rather to convey how the different layers
will have to interoperate within the system.

6.1 User Creation

User Interface layer: The user starts at a DMA Web Portal instance (either the central node or a
locally deployed node, if such exists). The user first invokes a “New User” function, the successful
return of which triggers the request for additional user metadata.

1 https://docs.google.com/document/d/1m1dPHYlPimeRrIEzHQjEVj_Iz6DpyTA_zvuPlHcZz2k/edit

https://docs.google.com/document/d/1m1dPHYlPimeRrIEzHQjEVj_Iz6DpyTA_zvuPlHcZz2k/edit

D5.2 DMA Blockchain Design

Page 19 of 20

Business Logic layer: This layer must either retrieve a passphrase from the user or generate a
random passphrase. This passphrase may or may not be stored in the DMA Secret Management
Component. This layer first calls the Blockchain layer, in order to establish a new EOA and to
retrieve the address of this EOA, which becomes the PID for the user in the DMA Metadata
Management component as well as for the user account in the DMA Authentication component. It
then calls the Metadata Management component in order to store additional information about
the user.

Blockchain layer: We must implement an API method that allows the creation of new EOAs. At
present we are considering making use of the Web3.py1 library.

6.2 User Login

User Interface layer: The user submits her authentication credentials through a web interface

Business Logic layer: This layer authenticates the user against the DMA Authentication component
and returns an OAuth token. At the same time, it uses the passphrase (or retrieves the passphrase
from the Secret Management component with the user credentials) and authenticates the user’s
EOA on the Blockchain node.

Blockchain layer: This layer makes use of the Web3.py library to authenticate the user account on
the Blockchain node in question.

6.3 Create Data Asset

User Interface layer: The user starts at a DMA Web Portal instance (either the central node or a
locally deployed node, if such exists). The user first invokes a “New Data Asset” function, which
includes a form for all required (and optional) Data Asset metadata. This must include references
to any related License Contract addresses.

Business Logic layer: Based on the submitted metadata, this layer first calls the Blockchain layer in
order to initialize the Data Asset Contract. With the returned address of the new Contract, the layer
then triggers the Ingest component, which also calls the Metadata Management component in
order to store and index the discovery metadata for the Data Asset. This layer may also need to
generate a random encryption key (to be stored in the Secret Management component) should the
Data Asset be stored encrypted.

Blockchain layer: This layer receives a request and a set of metadata necessary to instantiate a new
instance of a Data Asset Contract, and returns the address of the new Contract.

6.4 Version Data Asset

User Interface layer: An authenticated user selects a Data Asset for which she is either the creator,
Publisher, or Curator. She then modifies the metadata record for the Data Asset and submits.

Business Logic layer: This layer updates the Data Asset metadata record through the Metadata
Management component, and invokes the update method of the Blockchain layer API.

Blockchain layer: This layer invokes the update_dataasset method of the Data Asset Contract.

1 http://web3py.readthedocs.io/en/latest/

http://web3py.readthedocs.io/en/latest/

D5.2 DMA Blockchain Design

Page 20 of 20

6.5 Fork Data Asset

User Interface layer: An authenticated user selects a Data Asset for which she would like to fork.
She creates a new metadata record to go along with the new forked Data Asset and submits.

Business Logic layer: This layer first invokes the fork method of the Blockchain layer API; if this
method returns “true” then it creates a new Data Asset metadata record through the Metadata
Management component.

Blockchain layer: This layer invokes the fork_dataasset method of the Data Asset Contract.

6.6 Download Data Asset

User Interface layer: The already-authenticated user invokes the search functionality of the DMA
Portal, which in turn submits queries to the Metadata Management component’s indexes, in order
to find a specific Data Asset. The user then clicks the download option for the data asset.

Business Logic layer: This layer invokes the selected Data Asset’s License Contract. If the terms of
use are fulfilled (for example, if the Data Asset has been declared as “open”, this Contract will
always be fulfilled for any authenticated user in the system), the Blockchain layer returns “true”
and the download can proceed. This may or may not involved retrieving the Data Asset’s
encryption key in order to provide an unencrypted bytestream to the user.

Blockchain layer: This layer first invokes the download_dataasset method of the associated Data
Asset Contract with the user as the Agent in question. This in turn invokes the License Contract
specified by the Data Asset Contract. If the terms of use specified in the contract are fulfilled, the
Blockchain layer returns “true”; otherwise it returns “false.”

6.7 Create Service

User Interface layer: The user starts at a DMA Web Portal instance (either the central node or a
locally deployed node, if such exists). The user first invokes a “New Service” function, which
includes a form for all required (and optional) Service metadata. This must include references to
any related License Contract addresses.

Business Logic layer: Based on the submitted metadata, this layer first calls the Blockchain layer in
order to initialize the Service Contract. With the returned address of the new Contract, the layer
then triggers the Metadata Management component in order to store and index the discovery
metadata for the Data Asset.

Blockchain layer: This layer receives a request and a set of metadata necessary to instantiate a new
instance of a Service Contract, and returns the address of the new Contract.

	1 Introduction
	2 Blockchain Technology
	2.1 Private Ethereum Network
	2.2 Ethereum Basics
	2.2.1 Ethereum EOAs
	2.2.2 Ethereum Contracts
	2.2.3 Ethereum Ether (or Gas)

	3 Blockchain Architecture
	3.1 Ethereum Addresses
	3.2 Membership Management
	3.3 Identity Management
	3.4 Secret Management
	3.5 Smart Contracts

	4 Data Model
	4.1 DMA Entities
	4.2 Relation to DMA Metadata
	4.3 Architecture Overview

	5 State Contracts
	5.1 Data Asset Contract
	5.2 Service Contract
	5.3 Membership Contract

	6 Use Cases
	6.1 User Creation
	6.2 User Login
	6.3 Create Data Asset
	6.4 Version Data Asset
	6.5 Fork Data Asset
	6.6 Download Data Asset
	6.7 Create Service

